Search published articles


Showing 2 results for Learning Effect

Mir Saber Salehi Mir, Javad Rezaeian,
Volume 27, Issue 1 (3-2016)
Abstract

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machine is proportional to the actual processing time of the already processed jobs on the corresponding machine, i.e., the setup time of a job is past- sequence-dependent (p-s-d). The objective is to determine jointly the jobs assigned to each machine and the order of jobs such that the total completion time (called TC) is minimized. Since that the problem is NP-hard, optimal solution for the instances of realistic size cannot be obtained within a reasonable amount of computational time using exact solution approaches. Hence, an efficient method based on ant colony optimization algorithm (ACO) is proposed to solve the given problem. The performance of the presented model and the proposed algorithm is verified by a number of numerical experiments. The related results show that ant colony optimization algorithm is effective and viable approache to generate optimal⁄near optimal solutions within a reasonable amount of computational time.


Seyedhamed Mousavipour, Hiwa Farughi, Fardin Ahmadizar,
Volume 30, Issue 3 (9-2019)
Abstract

 Sequence dependent set-up times scheduling problems (SDSTs), availability constraint and transportation times are interesting and important issues in production management, which are often addressed separately. In this paper, the SDSTs job shop scheduling problem with position-based learning effects, job-dependent transportation times and multiple preventive maintenance activities is studied. Due to learning effects, jobs processing times are not fixed during plan horizon and each machine has predetermined number of preventive maintenance activities. A novel mixed integer linear programming model is proposed to formulate the problem for minimizing Make Span. Owing to the high complexity of the problem; we applied Grey Wolf Optimizer (GWO) and Invasive Weed Optimizer (IWO) to find nearly optimal solutions for medium and large instances. Finally, the computational Results are provided for evaluating the performance and effectiveness of the proposed solution approaches.

Page 1 from 1