Search published articles


Showing 9 results for Metaheuristic

, ,
Volume 23, Issue 2 (6-2012)
Abstract

The Network Design Problem (NDP) is one of the important problems in combinatorial optimization. Among the network design problems, the Multicommodity Capacitated Network Design (MCND) problem has numerous applications in transportation, logistics, telecommunication, and production systems. The MCND problems with splittable flow variables are NP-hard, which means they require exponential time to be solved in optimality. With binary flow variables or unsplittable MCND, the complexity of the problem is increased significantly. With growing complexity and scale of real world capacitated network design applications, metaheuristics must be developed to solve these problems. This paper presents a simulated annealing approach with innovative representation and neighborhood structure for unsplittable MCND problem. The parameters of the proposed algorithms are tuned using Design of Experiments (DOE) method and the Design-Expert statistical software. The performance of the proposed algorithm is evaluated by solving instances with different dimensions from OR-Library. The results of the proposed algorithm are compared with the solutions of CPLEX solver.  The results show that the proposed SA can find near optimal solution in much less time than exact algorithm.
Amineh Zadbood, Kazem Noghondarian, Zohreh Zadbood,
Volume 24, Issue 2 (6-2013)
Abstract

Response surface methodology is a common tool in optimizing processes. It mainly concerns situations when there is only one response of interest. However, many designed experiments often involve simultaneous optimization of several quality characteristics. This is called a Multiresponse Surface Optimization problem. A common approach in dealing with these problems is to apply desirability function approach combined with an optimization algorithm to determine the best settings of control variables. As the response surfaces are often nonlinear and complex a number of meta-heuristic search techniques have been widely for optimizing the objective function. Amongst these techniques genetic algorithm, simulated annealing, tabu search and hybridization of them have drawn a great deal of attention so far. This study presents the use of harmony search algorithm for Multiresponse surface optimization. It is one of the recently developed meta heuristic algorithms that has been successfully applied to several engineering problems. This music inspired heuristic is conceptualized from the musical process of searching for a perfect state of harmony. The performance of the algorithm is evaluated by an example from the literature. Results indicate the efficiency and outperformance of the method in comparison with some previously used methods.
Farid Khoshalhan, Ali Nedaie,
Volume 27, Issue 1 (3-2016)
Abstract

There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algorithm will be used for solving large-scale solving support vector machine model which is a quadratic optimization problem and cannot be solved in a non polynomial time using exact algorithms or optimally using traditional heuristic ones in large scale sizes. The efficiency of the new algorithm will be compared to traditional one in terms of the optimality and time measures. The superiority of the algorithm can be compared versus older version.


Farzaneh Nasirian, Mohammad Ranjbar,
Volume 28, Issue 2 (6-2017)
Abstract

Public transportation has been one of the most important research fields in the two last decades. The purpose of this paper is to create a schedule for public transport fleets such as buses and metro trains with the goal of minimizing the total transfer waiting time. We extend previous research works in the field of transit schedule with considering headways of each route as decision variables. In this paper, we formulate the problem as a mixed integer linear programming model and solve it using ILOG CPLEX solver. For large-scale test instances, we develop a metaheuristic based on the scatter search algorithm to obtain good solutions in a reasonable CPU run times. Finally, in the computational section, the efficiency of the proposed model and developed algorithm are compared with the existing results in the literature on a real railway network.


Mojtaba Torkinejad, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mirmehdi Seyed Esfahani,
Volume 28, Issue 4 (11-2017)
Abstract

Considering the high costs of the implementation and maintenance of gas distribution networks in urban areas, optimal design of such networks is vital. Today, urban gas networks are implemented within a tree structure. These networks receive gas from City Gate Stations (CGS) and deliver it to the consumers. This study presents a comprehensive model based on Mixed Integer Nonlinear Programming (MINLP) for the design of urban gas networks taking into account topological limitations, gas pressure and velocity limitations and environmental limitations. An Ant Colony Optimization (ACO) algorithm is presented for solving the problem and the results obtained by an implementation of ACO algorithm are compared with the ones obtained through an iterative method to demonstrate the efficiency of ACO algorithm. A case study of a real situation (gas distribution in Kelardasht, Iran) affirms the efficacy of the proposed approach.
 
Islam Gomaa, Hegazy Zaher, Naglaa Ragaa Saeid, Heba Sayed ,
Volume 34, Issue 1 (3-2023)
Abstract

Researchers in many fields, such as operations research, computer science, AI engineering, and mathematical engineering, extra, are increasingly adopting nature-inspired metaheuristic algorithms because of their simplicity and flexibility. Natural metaheuristic algorithms are based on two essential terms: exploration (diversification) and exploitation (intensification). The success and limitations of these algorithms are reliant on the tuning and control of their parameters. When it comes to tackling real optimization problems, the Gorilla Troop Optimizer (GTO) is an extremely effective algorithm that is inspired by the social behavior of gorilla troops. Three operators of the original GTO algorithm are committed to exploration, and the other two operators are dedicated to exploitation. Even though the superiority of GTO algorithm to several metaheuristic algorithms, it needs to improve the balance between the exploration process and the exploitation process to ensure an accurate estimate of the global optimum. For this reason, a Novel Enhanced version of GTO (NEGTO), which focuses on the correct balance of exploration and exploitation, has been proposed. This paper suggests a novel modification on the original GTO to enhance the exploration process and exploitation process respectively, through introducing a dynamic controlling parameter and improving some equations in the original algorithm based on the new controlling parameter. A computational experiment is conducted on a set of well-known benchmark test functions used to show that NEGTO outperforms the standard GTO and other well-known algorithms in terms of efficiency, effectiveness, and stability. The proposed NEGTO for solving global optimization problems outperforms the original GTO in most unimodal benchmark test functions and most multimodal benchmark test functions, a wider search space and more intensification search of the global optimal solution are the main advantages of the proposed NEGTO.
Prasad Bari, Prasad Karande,
Volume 34, Issue 2 (6-2023)
Abstract

This paper presents a model for minimizing the makespan in the flow shop scheduling problem. Due to the impact of increased workloads, flow shops are becoming more popular and widely used in industries. To solve the challenge of minimizing makespan, a Hybrid-Heuristic-Metaheuristic-Genetic-Algorithm (HHMGA) is proposed. The proposed HHMGA algorithm is tested using the simulation software and demonstrated with steel industry data. The results are compared with those of the best available flow shop problem algorithms such as Palmer’s slope index, Campbell-Dudek-Smith (CDS), Nawaz-Enscore-Ham (NEH), genetic algorithm (GA) and particle swarm optimization (PSO). According to empirical results and relative differences from the lower bound, the proposed technique outperforms the three heuristics and two metaheuristics algorithms in three of six cases, while the remaining three produce the same results as the NEH heuristic. In comparison to the steel industry's regular job scheduling technique, the simulation model based on HHMGA can save 4642 hours. It was discovered that the suggested model enhanced the job sequence based on the makespan requirements.
Rabie Mosaad Rabie, Hegazy Zaher, Naglaa Ragaa Saied, Heba Sayed,
Volume 35, Issue 1 (3-2024)
Abstract

Harris Hawks Optimization (HHO) algorithm, which is a new metaheuristic algorithm that has shown promising results in comparison to other optimization methods. The surprise pounce is a cooperative behavior and chasing style exhibited by Harris' Hawks in nature. To address the limitations of HHO, specifically its susceptibility to local optima and lack of population diversity, a modified version called Modified Harris Hawks Optimization (MHHO) is proposed for solving global optimization problems. A mutation-selection approach is utilized in the proposed Modified Harris Hawks Optimization (MHHO) algorithm. Through systematic experiments conducted on 23 benchmark functions, the results have demonstrated that the MHHO algorithm offers a more reliable solution compared to other established algorithms. The MHHO algorithm exhibits superior performance to the basic HHO, as evidenced by its superior average values and standard deviations. Additionally, it achieves the smallest average values among other algorithms while also improving the convergence speed. The experiments demonstrate competitive results compared to other meta-heuristic algorithms, which provide evidence that MHHO outperforms others in terms of optimization performance. 


Page 1 from 1