Search published articles


Showing 4 results for Multi-Objective Programming

, ,
Volume 23, Issue 2 (6-2012)
Abstract

The problem of staff scheduling at a truck hub for loading and stripping of the trucks is an important and difficult problem to optimize the labor efficiency and cost. The trucks enter the hub at different hours a day, in different known time schedules and operating hours. In this paper, we propose a goal programming to maximize the labor efficiency via minimizing the allocation cost. The proposed model of this paper is implemented for a real-world of a case study and the results are analyzed.
Firoozeh Kaveh, Reza Tavakkoli-Moghaddam, Amin Jamili, Maryam Eghbali,
Volume 27, Issue 4 (12-2016)
Abstract

This paper presents a bi-objective capacitated hub arc location problem with single assignment for designing a metro network with an elastic demand. In the literature, it is widely supposed that the network created with the hub nodes is complete. In this paper, this assumption is relaxed. Moreover, in most hub location problems, the demand is assumed to be static and independent of the location of hubs. However, in real life problems, especially for locating a metro hub, the demand is dependent on the utility that is proposed by each hub. By considering the elasticity of demand, the complexity of solving the problem increases. The presented model also has the ability to compute the number of trains between each pair of two hubs. The objectives of this model are to maximize the benefits of transportation and establishing the hub facilities while minimizing the total transportation time. Furthermore, the bi-objective model is converted into a single objective one by the TH method. The significance of applicability of the developed model is demonstrated by a number of numerical experiments and some sensitivity analyses on the data inspired by the Qom monorail project. Finally, the conclusion is provided.


Mostafa Ekhtiari, Mostafa Zandieh, Akbar Alem-Tabriz, Masood Rabieh,
Volume 29, Issue 1 (3-2018)
Abstract

Supplier selection is one of the influential decisions for effectiveness of purchasing and manufacturing policies under competitive conditions of the market. Regarding the fact that decision makers (DMs) consider conflicting criteria for selecting suppliers, multiple-criteria programming is a promising approach to solve the problem. This paper develops a nadir compromise programming (NCP) model for decision-making under uncertainty on the selection of suppliers within the framework of binary programming. Depending on the condition of uncertainty, three statuses are taken into consideration and a solution approach is proposed for each status. A pure deterministic NCP model is presented for solving the problem in white condition (certainty of data) and a solution approach resulted from combination of NCP and stochastic programming is introduced to solve the model in black (uncertainty of data) situation. The paper also proposes a NCP model under certainty and uncertainty for solving problem under grey (a combination of certainty and uncertainty of data) conditions. The proposed approaches are illustrated for a real problem in steel industry with multiple objectives. Also, a simulation approach has been designed in order to examine the results obtained and also verifies capabilities of the proposed model.


Jafar Esmaeeli, Maghsoud Amiri, Houshang Taghizadeh,
Volume 32, Issue 2 (6-2021)
Abstract

So far, numerous studies have been developed to evaluate the performance of “Decision-Making Units (DMUs)” through “Data Envelopment Analysis (DEA)” and “Network Data Envelopment Analysis (NDEA)” models in different places, but most of these studies have measured the performance of DMUs by efficiency criteria. The productivity is considered as a key factor in the success and development of DMUs and its evaluation is more comprehensive than efficiency evaluation. Recently, studies have been developed to evaluate the productivity of DMUs through the mentioned models but firstly, the number of these studies especially in NDEA models is scarce, and secondly, productivity in these studies is often evaluated through the “productivity indexes”. These indexes require at least two time periods and also the two important elements of efficiency and effectiveness in these studies are not significantly evident. So, the purpose of this study is to develop a new approach in the NDEA models usingMulti-Objective Programming (MOP)” method in order to measure productivity of DMUs through efficiency and effectiveness “simultaneously, in one stage, in a period, and interdependently”. “Simultaneous and single-stage” study provides the advantage of sensitivity analysis in the model. One case study demonstrates application of the proposed approach in the branches of a Bank. Using proposed approach revealed that it is possible for a branch to be efficient by considering its subdivisions separately but not be efficient by considering the conjunction between its subdivisions. In addition, a branch may be efficient by considering the conjunction between its subdivisions but not be productive. Efficient branches are not necessarily productive, but productive branches are also efficient.
 

Page 1 from 1