Search published articles


Showing 43 results for Object

M.b Aryanezhad , A. Roghanian ,
Volume 19, Issue 1 (3-2008)
Abstract

Abstract: Bi-level programming, a tool for modeling decentralized decisions, consists of the objective(s) of the leader at its first level and that is of the follower at the second level. Three level programming results when second level is itself a bi-level programming. By extending this idea it is possible to define multi-level programs with any number of levels. Supply chain planning problems are concerned with synchronizing and optimizing multiple activities involved in the enterprise, from the start of the process, such as procurement of the raw materials, through a series of process operations, to the end, such as distribution of the final product to customers.  Enterprise-wide supply chain planning problems naturally exhibit a multi-level decision network structure, where for example, one level may correspond to a local plant control/scheduling/planning problem and another level to a corresponding plant-wide planning/network problem. Such a multi-level decision network structure can be mathematically represented by using “multi-level programming” principles. This paper studies a “bi-level linear multi-objective decision making” model in with “interval” parameters and presents a solution method for solving it this method uses the concepts of tolerance membership function and multi-objective multi-level optimization when all parameters are imprecise and interval .

  


M.b. Aryanezhad , E. M.b.aryanezhad & E.roghanian ,
Volume 19, Issue 1 (3-2008)
Abstract

  Bi-level programming, a tool for modeling decentralized decisions, consists of the objective(s) of the leader at its first level and that is of the follower at the second level. Three level programming results when second level is itself a bi-level programming. By extending this idea it is possible to define multi-level programs with any number of levels. Supply chain planning problems are concerned with synchronizing and optimizing multiple activities involved in the enterprise, from the start of the process, such as procurement of the raw materials, through a series of process operations, to the end, such as distribution of the final product to customers.

  Enterprise-wide supply chain planning problems naturally exhibit a multi-level decision network structure, where for example, one level may correspond to a local plant control/scheduling/planning problem and another level to a corresponding plant-wide planning/network problem. Such a multi-level decision network structure can be mathematically represented by using “multi-level programming” principles. This paper studies a “bi-level linear multi-objective decision making” model in with “interval” parameters and presents a solution method for solving it this method uses the concepts of tolerance membership function and multi-objective multi-level optimization when all parameters are imprecise and interval .

 


A. Amid, S.h. Ghodsypour,
Volume 19, Issue 4 (12-2008)
Abstract

  Supplier selection is one of the most important activities of purchasing departments. This importance is increased even more by new strategies in a supply chain, because of the key role suppliers perform in terms of quality, costs and services which affect the outcome in the buyer’s company. Supplier selection is a multiple criteria decision making problem in which the objectives are not equally important. In practice, vagueness and imprecision of the goals, constraints and parameters in this problem make the decision making complicated. Simultaneously, in this model, vagueness of input data and varying importance of criteria are considered. In real cases, where Decision- Makers (DMs) face up to uncertain data and situations, the proposed model can help DMs to find out the appropriate ordering from each supplier, and allows purchasing manager(s) to manage supply chain performance on cost, quality, on time delivery, etc. An additive weighted model is presented for fuzzy multi objective supplier selection problem with fuzzy weights. The model is explained by an illustrative example.


Mahmood Rezaei Sadrabadi , Seyed Jafar Sadjadi,
Volume 20, Issue 1 (5-2009)
Abstract

Multiple Objective Programming (MOP) problems have become famous among many researchers due to more practical and realistic implementations. There have been a lot of methods proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP problems by starting from a utopian point (which is usually infeasible) and moving towards the feasible region via stepwise movements and a plain continuous interaction with Decision Maker (DM). We consider the case where all objective functions and constraints are linear. The implementation of the proposed algorithm is demonstrated with two numerical examples.

Volume 21, Issue 3 (9-2010)
Abstract

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot .


Behin Elahi, Seyed Mohammad Seyed-Hosseini, Ahmad Makui,
Volume 22, Issue 2 (6-2011)
Abstract

 

  Supplier selection,

  Multi-objective decision making,

  Fuzzy Compromise programming,

  Supply chain management,

  Quantity discount .

 

Supplier selection is naturally a complex multi-objective problem including both quantitative and qualitative factors. This paper deals with this issue from a new view point. A quantity discount situation, which plays a role of motivator for buyer, is considered. Moreover, in order to find a reasonable compromise solution for this problem, at first a multi-objective modeling is presented. Then a proposed fuzzy compromise programming is utilized to determine marginal utility function for each criterion. Also, group decision makers’ preferences have taken into account and the weight of each criterion has been measured by forming pair-wise comparison matrixes. Finally the proposed approach is conducted for a numerical example and its efficacy and efficiency are verified via this section. The results indicate that the proposed method expedites the generation of compromise solution .


Mahdi Karbasian, Saeed Abedi ,
Volume 22, Issue 4 (12-2011)
Abstract

One of the main principles of the passive defense is the principle of site selection. In this paper, we propose a multiple objective nonlinear programming model that considers the principle of the site selection in terms of two qualitative and quantitative aspects. The purpose of the proposed model is selection of the place of facilities of a system in which not only it observes the dispersion principle but also reduces the system transportation costs. Moreover, the proposed model tries to select the sites that can fulfill other elements of site selection as well as dispersion in a way that it increases the trustworthiness of the selected network .


Mostafa Setak, Samaneh Sharifi,
Volume 22, Issue 4 (12-2011)
Abstract

In recent years, Supplier evaluation and selection, an important element in supply chain management, has been gaining attention in both academic literature and industrial practice. The Mixed integer multi-Objective non-Linear programming model (MIMONLP) presented in this paper aimed to evaluate and select the appropriate set of suppliers considering quantitative and qualitative criteria and in addition to selecting the first layer's suppliers which relate directly to the organization, analyses the characteristics of second-layers suppliers, and design a network to determine the flow rate of products and materials between buyers and best suppliers in both layers. Another important feature of this model is considering holding costs of different products over the planning horizon and quantity discounts for the first layer's suppliers at the same time. Finally, the model is solved by using goal programming approach and numerical examples are presented to test the performance of proposed model.


, ,
Volume 23, Issue 2 (6-2012)
Abstract

The problem of staff scheduling at a truck hub for loading and stripping of the trucks is an important and difficult problem to optimize the labor efficiency and cost. The trucks enter the hub at different hours a day, in different known time schedules and operating hours. In this paper, we propose a goal programming to maximize the labor efficiency via minimizing the allocation cost. The proposed model of this paper is implemented for a real-world of a case study and the results are analyzed.
Iraj Mahdavi, Behrang Bootaki, Mohammd Mahdi Bootaki, Paydar,
Volume 25, Issue 1 (2-2014)
Abstract

Generally, human resources play an important role in manufacturing systems as they can affect the work environment. One of the most important factors affecting the human resources is being an interactional interest among the workers in the workshops. If the workers in a manufacturing cell have the highest surface of the interactional interest level, it causes a significant raise in coordination and cooperation indicators and in long time periods. In this paper, a new concept of being an interactional interest between workers in a manufacturing cell besides the ability to work with its machines is proposed and a bi-objective mathematical model to carry out this new point of view in cellular manufacturing systems is presented. Applying the ε-constraint method as an optimization tool for multi-objective mathematical programming, a comprehensive numerical example is solved to exhibit the capability of the presented model.
Maghsoud Amiri, Mohammadreza Sadeghi, Ali Khatami Firoozabadi, Fattah Mikaeili ,
Volume 25, Issue 1 (2-2014)
Abstract

The main goal in this paper is to propose an optimization model for determining the structure of a series-parallel system. Regarding the previous studies in series-parallel systems, the main contribution of this study is to expand the redundancy allocation parallel to systems that have repairable components. The considered optimization model has two objectives: maximizing the system mean time to first failure and minimizing the total cost of the system. The main constraints of the model are: maximum number of the components in the system, maximum and minimum number of components in each subsystem and total weight of the system. After establishing the optimization model, a multi objective approach of Imperialist Competitive Algorithm is proposed to solve the model.
Parviz Fattahi, Seyed Mohammad Hassan Hosseini, Fariborz Jolai, Azam Dokht Safi Samghabadi,
Volume 25, Issue 1 (2-2014)
Abstract

A three stage production system is considered in this paper. There are two stages to fabricate and ready the parts and an assembly stage to assembly the parts and complete the products in this system. Suppose that a number of products of different kinds are ordered. Each product is assembled with a set of several parts. At first the parts are produced in the first stage with parallel machines and then they are controlled and ready in the second stage and finally the parts are assembled in an assembly stage to produce the products. Two objective functions are considered that are: (1) to minimizing the completion time of all products (makespan), and (2) minimizing the sum of earliness and tardiness of all products (∑_i▒(E_i∕T_i ) . Since this type of problem is NP-hard, a new multi-objective algorithm is designed for searching locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, in terms of solution quality and diversity level, various test problems are made and the reliability of the proposed algorithm, based on some comparison metrics, is compared with two prominent multi-objective genetic algorithms, i.e. NSGA-II and SPEA-II. The computational results show that performance of the proposed algorithms is good in both efficiency and effectiveness criterions.
Seyed Hossein Razavi Hajiagha, Shide Sadat Hashemi, Hannan Amoozad Mahdiraji,
Volume 25, Issue 3 (7-2014)
Abstract

Data envelopment analysis operates as a tool for appraising the relative efficiency of a set of homogenous decision making units. This methodology is applied widely in different contexts. Regarding to its logic, DEA allows each DMU to take its optimal weight in comparison with other DMUs while a similar condition is considered for other units. This feature is a bilabial characteristic which optimizes the performance of units in one hand. This flexibility on the other hand threats the comparability of different units because different weighting schemes are used for different DMUs. This paper proposes a unified model for determination of a common set of weights to calculate DMUs efficiency. This model is developed based on a multi objective fractional linear programming model that considers the original DEA's results as ideal solution and seeks a set of common weights that rank the DMUs and increase the model's discrimination power. Comparison of the proposed method with some of the previously presented models has shown its advantages as a DMUs ranking model.
Mahdi Karbasian, Batool Mohebi, Bijan Khayambashi, Mohsen Chesh Berah, Mehdi Moradi,
Volume 26, Issue 4 (11-2015)
Abstract

The present paper aims to investigate the effects of modularity and the layout of subsystems and parts of a complex system on its maintainability. For this purpose, four objective functions have been considered simultaneously: I) maximizing the level of accordance between system design and optimum modularity design,II) maximizing the level of accessibility and the maintenance space required,III) maximizing the providing of distance requirement and IV) minimizing the layout space. The first objective function has been put forward for the first time in the present paper and in it, the optimum system modularity design was determined using the Design Structure Matrix (DSM) technique.The second objective function is combined with the concept of Level of Repair Analysis (LoRA) and developed. Simultaneous optimization of the above-mentioned objective functions has not been considered in previous studies. The multi objective problem which has been put forward was applied on a laser range finder containing 17 subsystems and the modularity and optimum layout was determined using a multi objective particle swarm optimization (MOPSO) algorithm.

\"AWT


Firoozeh Kaveh, Reza Tavakkoli-Moghaddam, Amin Jamili, Maryam Eghbali,
Volume 27, Issue 4 (12-2016)
Abstract

This paper presents a bi-objective capacitated hub arc location problem with single assignment for designing a metro network with an elastic demand. In the literature, it is widely supposed that the network created with the hub nodes is complete. In this paper, this assumption is relaxed. Moreover, in most hub location problems, the demand is assumed to be static and independent of the location of hubs. However, in real life problems, especially for locating a metro hub, the demand is dependent on the utility that is proposed by each hub. By considering the elasticity of demand, the complexity of solving the problem increases. The presented model also has the ability to compute the number of trains between each pair of two hubs. The objectives of this model are to maximize the benefits of transportation and establishing the hub facilities while minimizing the total transportation time. Furthermore, the bi-objective model is converted into a single objective one by the TH method. The significance of applicability of the developed model is demonstrated by a number of numerical experiments and some sensitivity analyses on the data inspired by the Qom monorail project. Finally, the conclusion is provided.


Mohammad Khalilzadeh, Alborz Hajikhani, Seyed Jafar Sadjadi,
Volume 28, Issue 1 (3-2017)
Abstract

The present paper aims to propose a fuzzy multi-objective model to allocate order to supplier in uncertainty conditions and for multi-period, multi-source, and multi-product problems at two levels with wastages considerations.  The cost including the purchase, transportation, and ordering costs, timely delivering or deference shipment quality or wastages which are amongst major quality aspects, partial coverage of suppliers in respect of distance and finally, suppliers weights which make the products orders more realistic are considered as the measures to evaluate the suppliers in the proposed model. Supplier's weights in the fifth objective function are obtained using fuzzy TOPSIS technique. Coverage and wastes parameters in this model are considered as random triangular fuzzy number. Multi-objective imperial competitive optimization (MOICA) algorithm has been used to solve the model,. To demonstrate applicability of MOICA, we applied non-dominated sorting genetic algorithm (NSGA-II). Taguchi technique is executed to tune the parameters of both algorithms and results are analyzed using quantitative criteria and performing parametric. 


Aghil Hamidihesarsorkh, Ali Papi, Ali Bonyadi Naeini, Armin Jabarzadeh,
Volume 28, Issue 1 (3-2017)
Abstract

Nowadays, the popularity of social networks as marketing tools has brought a deal of attention to social networks analysis (SNA). One of the well-known Problems in this field is influence maximization problems which related to flow of information within networks. Although, the problem have been considered by many researchers, the concept behind of this problem has been used less in business context. In this paper, by using a cost-benefits analysis, we propose a multi-objective optimization model which helps to identify the key nodes location, which are a symbol of potential influential customers in real social networks. The main novelty of this model is that it determines the best nodes by combining two essential and realistic elements simultaneously: diffusion speed and dispersion cost. Also, the performance of the proposed model is validated by detecting key nodes on a real social network


Ali Mohtashami, Alireza Alinezhad,
Volume 28, Issue 3 (9-2017)
Abstract

In this article, a multi objective model is presented to select and allocate the order to suppliers in uncertainty condition and in a multi source, multi customer and multiproduct case in a multi period state at two levels of supply chain. Objective functions considered in this study as the measures to evaluate suppliers are cost including purchase, transportation and ordering costs, timely delivering, shipment quality or wastages which are amongst major quality aspects, partial and general coverage of suppliers in respect of distance and finally suppliers weights making the products orders amount more realistic. The major limitations are price discount for products by suppliers which are calculated using signal function. In addition, suppliers weights in the fifth objective function is calculated using fuzzy Topsis technique. Lateness and wastes parameters in this model are considered as uncertain and random triangular fuzzy number. Finally the multi objective model is solved using two multi objective algorithms of Non-dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO) and the results are analyzed using quantitative criteria Taguchi technique was used to regulate the parameters of two algorithms. 


Keyvan Roshan, Mehdi Seifbarghy, Davar Pishva,
Volume 28, Issue 4 (11-2017)
Abstract

Preventive healthcare aims at reducing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. In this paper, a bi-objective mathematical model is proposed to design a network of preventive healthcare facilities so as to minimize total travel and waiting time as well as establishment and staffing cost. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Since the developed model of the problem is of an NP-hard type, tri-meta-heuristic algorithms are proposed to solve the problem. Initially, Pareto-based meta-heuristic algorithm called multi-objective simulated annealing (MOSA) is proposed in order to solve the problem. To validate the results obtained, two popular algorithms namely, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are utilized. Since the solution-quality of all meta-heuristic algorithms severely depends on their parameters, Taguchi method has been utilized to fine tune the parameters of all algorithms. The computational results, obtained by implementing the algorithms on several problems of different sizes, demonstrate the reliable performances of the proposed methodology.


- S. Ali Torabi, - Abtin Boostani,
Volume 29, Issue 1 (3-2018)
Abstract

This paper addresses supplier selection and order allocation problem while considering the losses arising from the risk of sanction in Iran’s Oil & Gas Drilling Industry. In the proposed study, two general classes of items and two different classes of suppliers are considered. AHP is first used to rank the potential suppliers. Then, a multi-objective linear programming model is proposed to determine the best suppliers and their allocated orders. A numerical example is presented to demonstrate the applicability of the proposed model.



Page 1 from 3    
First
Previous
1