Seyed Mohammad Seyedhosseini, Mohammad Mahdavi Mazdeh, Dr. Ahmad Makui, Seyed Mohammad Ghoreyshi,
Volume 27, Issue 1 (3-2016)
Abstract
In any supply chain, distribution planning of products is of great importance to managers. With effective and flexible distribution planning, mangers can increase the efficiency of time, place, and delivery utility of whole supply chain. In this paper, inventory routing problem (IRP) is applied to distribution planning of perishable products in a supply chain. The studied supply chain is composed of two levels a supplier and customers. Customers’ locations are geographically around the supplier location and their demands are uncertain and follow an independent probability distribution functions. The product has pre-determined fixed life and is to be distributed among customers via a fleet of homogenous vehicles. The supplier uses direct routes for delivering products to customers. The objective is to determine when to deliver to each customer, how much to deliver to them, and how to assign them to vehicle and routes. The mentioned problem is formulated and solved using a stochastic dynamic programming approach. Also, a numerical example is given to illustrate the applicability of proposed approach.
Mohammad Hasan Esmaili, Seyed Meysam Mousavi,
Volume 31, Issue 2 (6-2020)
Abstract
To demonstrate the importance of customer satisfaction can mention numbers of the service providers that attempt to differentiate themselves by satisfied their customers, witnessed high growth. In this paper, some factors that increase retailers and customers’ satisfaction, such as driver consistent services and delivering fresh products, are considered in a perishable inventory routing problem (PIRP) under possibility and necessity class of fuzzy uncertainty measures. In a typical inventory routing problem (IRP), a distribution center delivers products to a set of customers through a limited time horizon, and simultaneously makes a decision about inventory and routing to minimize the total cost. The proposed model is formulated as mixed-integer programming. Two types of consistent driver services are regarded for different kinds of customers, including particular and typical customers. To investigate the validity of the model, the problem is solved for two values of possibility and necessity measures.