Volume 21, Issue 3 (9-2010)
Abstract
In this paper an Ant Colony (ACO) algorithm is developed to solve aircraft recovery while considering disrupted passengers as part of objective function cost. By defining the recovery scope, the solution always guarantees a return to the original aircraft schedule as soon as possible which means least changes to the initial schedule and ensures that all downline affects of the disruption are reflected. Defining visibility function based on both current and future disruptions is one of our contributions in ACO which aims to recover current disruptions in a way that cause less consequent disruptions. Using a real data set, the computational results indicate that the ACO can be successfully used to solve the airline recovery problem .
Emad Sane-Zerang, Reza Tavakkoli-Moghaddam, Hossein Heydarian,
Volume 27, Issue 3 (9-2016)
Abstract
This paper considers a bi-objective mathematical model for locations of landfills, transfer stations and material recovery facilities (MRFs) in order to serve the entire regions and simultaneously identify the capacities of landfills. This is a mixed-integer programming (MIP) model, whose objectives are to minimize the total cost and pollution simultaneously. To validate the model, a numerical example is solved an augmented ε-constraint method and the associated computational results are presented to show the number of solid waste facilities and location of sites for solid waste facilities.
Rasol Jamshidi,
Volume 27, Issue 3 (9-2016)
Abstract
Most manufacturers use human-machine systems to produce high-quality products. Dealing with human-machine systems is very complicated since not only machines should be utilized in proper condition but also appropriate environment should be provided for human resources. Most manufacturers have a maintenance plan for machines but many of them do not have a proper work-rest schedule for human resources. Considering this fact we emphasis on human role in human-machine systems maintenance and propose a mathematical model that obtains the optimal work-rest schedule for humans based on fatigue-recovery models and the optimal maintenance policy for machines based on reliability level. The performance of proposed model was examined by some instances and the obtained results indicate this model can provide effective maintenance policy for human-machine systems.