Search published articles


Showing 2 results for Signal Function Discount

Mohammad Khalilzadeh, Alborz Hajikhani, Seyed Jafar Sadjadi,
Volume 28, Issue 1 (3-2017)
Abstract

The present paper aims to propose a fuzzy multi-objective model to allocate order to supplier in uncertainty conditions and for multi-period, multi-source, and multi-product problems at two levels with wastages considerations.  The cost including the purchase, transportation, and ordering costs, timely delivering or deference shipment quality or wastages which are amongst major quality aspects, partial coverage of suppliers in respect of distance and finally, suppliers weights which make the products orders more realistic are considered as the measures to evaluate the suppliers in the proposed model. Supplier's weights in the fifth objective function are obtained using fuzzy TOPSIS technique. Coverage and wastes parameters in this model are considered as random triangular fuzzy number. Multi-objective imperial competitive optimization (MOICA) algorithm has been used to solve the model,. To demonstrate applicability of MOICA, we applied non-dominated sorting genetic algorithm (NSGA-II). Taguchi technique is executed to tune the parameters of both algorithms and results are analyzed using quantitative criteria and performing parametric. 


Ali Mohtashami, Alireza Alinezhad,
Volume 28, Issue 3 (9-2017)
Abstract

In this article, a multi objective model is presented to select and allocate the order to suppliers in uncertainty condition and in a multi source, multi customer and multiproduct case in a multi period state at two levels of supply chain. Objective functions considered in this study as the measures to evaluate suppliers are cost including purchase, transportation and ordering costs, timely delivering, shipment quality or wastages which are amongst major quality aspects, partial and general coverage of suppliers in respect of distance and finally suppliers weights making the products orders amount more realistic. The major limitations are price discount for products by suppliers which are calculated using signal function. In addition, suppliers weights in the fifth objective function is calculated using fuzzy Topsis technique. Lateness and wastes parameters in this model are considered as uncertain and random triangular fuzzy number. Finally the multi objective model is solved using two multi objective algorithms of Non-dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO) and the results are analyzed using quantitative criteria Taguchi technique was used to regulate the parameters of two algorithms. 



Page 1 from 1