Search published articles


Showing 8 results for Topsis

Mir. B. Aryanezhad, M.j. Tarokh, M.n. Mokhtarian, F. Zaheri,
Volume 22, Issue 1 (3-2011)
Abstract

  Multiple criteria decision making (MCDM) problem is one of the famous different kinds of decision making problems. In more cases in real situations, determining the exact values for MCDM problems is difficult or impossible. So, the values of alternatives with respect to the criteria or / and the values of criteria weights, are considered as fuzzy values (fuzzy numbers). In such conditions, the conventional crisp approaches for solving MCDM problems tend to be less effective for dealing with the imprecise or vagueness nature of the linguistic assessments. In this situation, the fuzzy MCDM methods are applied for solving MCDM problems. In this paper, we propose a fuzzy TOPSIS (for Order Preference by Similarity to Ideal Solution) method based on left and right scores for fuzzy MCDM problems. To show the applicability of the proposed method, two numerical examples are presented. As a result, our proposed method is precise, easy use and practical for solving MCDM problem with fuzzy data. Moreover, the proposed method considers the decision makers (DMs) preference in the decision making process. It seems that the proposed fuzzy TOPSIS method is flexible and easy to use and has a low computational volume .


Mostafa Shirinfar, Hassan Haleh,
Volume 22, Issue 4 (12-2011)
Abstract

In this study, an outsourcer evaluation and management system is developed for a manufacturing company by use of Fuzzy goal programming (FGP). A first phase of the methodology evaluation criteria for outsources and the objectives of the company are determined. Considering the fuzziness in the decision data, linguistic variables that can be expressed in generalized fuzzy number are used. The propose approach is utilized from fuzzy sets, Analytic Network Process (ANP), fuzzy TOPSIS and Preference Ranking Organization method for enrichment evaluations (PROMETHEE) approaches. Evaluation criteria for this problem are weighted by Fuzzy ANP approach then in the Fuzzy TOPSIS and Fuzzy PROMETHEE approaches. At the second phase the FGP model developed selects the most appropriate outsourcers suitable to be strategic partners with the company and simultaneously allocates the quantities to be ordered to them. At the end, gives the computational results .


Mahdi Karbasian, Saeed Abedi,
Volume 23, Issue 1 (3-2012)
Abstract

One of the main principles of the passive defense is the principle of site selection. In this paper, we propose a multiple objective nonlinear programming model that considers the principle of the site selection in terms of two qualitative and quantitative aspects. The purpose of the proposed model is selection of the place of key production facilities of a system in which not only it observes the dispersion principle but also reduces the system transportation costs. Moreover, the proposed model tries to select the sites that can fulfill other elements of site selection as well as dispersion in a way that it increases the trustworthiness of the selected network. For solving the proposed model we used the Genetic Algorithm integrated with TOPSIS method.
Yahia Zare Mehrjerdi,
Volume 24, Issue 3 (9-2013)
Abstract

Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: Researcher explains the importance of selection criteria for evaluation of RFID-based system. It provides key elements on radio frequency identification, fuzzy hierarchical TOPSIS methodology and an algorithm that can be followed to solve the problem. A sample problem using the algorithm is solved and results are explained. Findings: The hierarchical TOPSIS model used in this article is able to grasp the ambiguity exists in the utilized information and the fuzziness appears in the human judgments and preferences. The use of the hierarchical fuzzy TOPSIS methodology offers a number of benefits: (1) it is a systematic model and straight forward to work on (2) capable to capture the human's appraisal of ambiguity when management should deal with a complex multiple objective situations. The hierarchical fuzzy TOPSIS is in some way superior to the other Fuzzy multi criterion decision making techniques, such as fuzzy analytic hierarchy process (FAHP) and classical fuzzy TOPSIS methods. This is because while in the hierarchical structure no pair-wise comparisons among criteria, sub-criteria, and alternatives are necessary to be made, it is already being taken into consideration by the model. Hierarchical fuzzy. Practical implications (if applicable): What is original/value of paper: Due to the fact that a better management of health care system is related to the full understanding of the technologies implemented and the system under consideration, sufficient background on the radio frequency identification technology is provided and the RFID systems most likely management would face with and select one are provided for decisions to be made on them. Key Words: RFID Technology, RFID-based system selection, healthcare applications, hierarchical fuzzy TOPSIS.
Mahdi Karbasian, Mohammad Farahmand, Mohammad Ziaei,
Volume 26, Issue 2 (7-2015)
Abstract

This research aims at presenting a consolidated model of data envelopment analysis (DEA) technique and value engineering to select the best manufacturing methods for gate valve covers and ranking the methods using TOPSIS.To do so, efficiency evaluation indices were selected based on the value engineering approach and different manufacturing methods were evaluated using DEA technique.Finally, effective methods were ranked based on TOPSIS. Accordingly, 48 different methods were identified for manufacturing the part. The DEA results showed that only 12 methods have complete efficiency. Meanwhile manufacturing method No. 32 (A216 WCB casting purchased from Chinese market as the raw material, machining by CNC+NC and drilling by radial drill) was ranked the first.Major limitations of the research include time limitations, place limitation, lack of access to the standards adaptability index in different machining and drilling methods, limitation on evaluating all parts of a product, limitation on a technique evaluating efficiency and ranking, and mere satisfying with superior indices in each factor of value engineering. Most previous studies only evaluated efficiency of manufacturing methods based on a single approach.By applying value engineering, which is in fact a combination of three approaches (including quality approach, functional, and cost approaches), the present research provided a far more comprehensive model to evaluate manufacturing methods in industrial.

\"AWT


Dr Akbar Esfahanipour, Mr Hamed Davari Ardakani,
Volume 26, Issue 4 (11-2015)
Abstract

In today’s competitive business situation, performance evaluation of firms is an extremely important concern of all the people who are typically stakeholders of the business game. In case of holding companies, this is a more important issue since the parent firm must permanently control the situation of its subsidiaries in their sectors to make appropriate investment decisions. This paper develops a multicriteria decision making (MCDM) approach for evaluating performance of firms considering financial and productivity criteria.. We adopt Fuzzy Analytic Hierarchy Process (FAHP) method to determine the relative importance of evaluation criteria, taking the vagueness and imprecision of human judgments into consideration. Then, we employ the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) for ranking of firms. Afterward, this paper enjoys benefit of using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) to assess the validity of the obtained ranking results. Our approach was applied to a holding company listed in Tehran Stock Exchange (TSE) as a real case. The analysis of ranking results revealed advantages of combining these MCDM methods.

\"AWT


Ali Mohtashami, Alireza Alinezhad,
Volume 28, Issue 3 (9-2017)
Abstract

In this article, a multi objective model is presented to select and allocate the order to suppliers in uncertainty condition and in a multi source, multi customer and multiproduct case in a multi period state at two levels of supply chain. Objective functions considered in this study as the measures to evaluate suppliers are cost including purchase, transportation and ordering costs, timely delivering, shipment quality or wastages which are amongst major quality aspects, partial and general coverage of suppliers in respect of distance and finally suppliers weights making the products orders amount more realistic. The major limitations are price discount for products by suppliers which are calculated using signal function. In addition, suppliers weights in the fifth objective function is calculated using fuzzy Topsis technique. Lateness and wastes parameters in this model are considered as uncertain and random triangular fuzzy number. Finally the multi objective model is solved using two multi objective algorithms of Non-dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO) and the results are analyzed using quantitative criteria Taguchi technique was used to regulate the parameters of two algorithms. 


Mohammad Reza Zare Banadkouki, Mohammad Mahdi Lotfi,
Volume 32, Issue 1 (1-2021)
Abstract

In today’s world, manufacturing companies are required to integrate their sources with manufacturing systems and use novel technologies in order to survive in the competitive world market. In this context, computer integrated manufacturing (CIM) and its related technologies are taken as novel and efficient schemes; therefore, selecting the best technology among them has been a challenging issue. Such an investment decision is, in nature, a multi-attribute problem. In fact, manufacturing technologies have various advantages and disadvantages which need to be considered in order to choose the best one. In this paper, we briefly study the structure and goals of computer integrated manufacturing systems, the role of different sectors in traditional and modern manufacturing systems, and the effect of information communication on them. Then, various options regarding the implementation of an integrated computer manufacturing technology are introduced and a  combined model of the fuzzy analytical hierarchy process and fuzzy TOPSIS is proposed to handle the above-mentioned multiple criteria decision making problem. Finally, the considered options for manufacturing technologies are ranked using a numerical example.
 

Page 1 from 1