, , ,
Volume 23, Issue 2 (6-2012)
Abstract
Design of a logistics network in proper way provides a proper platform for efficient and effective supply chain management. This paper studies a multi-period, multi echelon and multi-product integrated forward-reverse logistics network under uncertainty. First, an efficient complex mixed-integer linear programming (MILP) model by considering some real-world assumptions is developed for the integrated logistics network design to avoid the sub-optimality caused by the separate design of the forward and reverse networks. Then, the stochastic counterpart of the proposed MILP model is used to measure the conditional value at risk (CVaR) criterion, as a risk measure, that can control the risk level of the proposed model. The computational results show the power of the proposed stochastic model with CVaR criteria in handling data uncertainty and controlling risk levels.
Seyed Babak Ebrahimi, Seyed Morteza Emadi,
Volume 27, Issue 4 (12-2016)
Abstract
Empirical studies show that there is stronger dependency between large losses than large profit in financial market, which undermine the performance of using symmetric distribution for modeling these asymmetric. That is why the assuming normal joint distribution of returns is not suitable because of considering the linier dependence, and can be lead to inappropriate estimate of VaR. Copula theory is basic tool for multivariate modeling, which is defined by using marginal and dependencies between variables joint distribution function. In addition, Copulas are able to explain and describe of complex multiple dependencies structures such as non-linear dependence. Therefore, in this study, by combining symmetric and asymmetric GARCH model for modeling the marginal distribution of variables and Copula functions for modeling financial data and also use of DCC model to determine the dynamic correlation structure between assets, try to estimate the Value at Risk of investment portfolio consists of five active index In Tehran Stock Exchange. The results demonstrate excellence of GJR-GARCH(1,1) with the distribution of t-student for marginal distribution. t-Copula model, estimates the Value at Risk model less than the Gaussian Copula in all cases.