Showing 77 results for Algorithm
Nadera Hourani,
Volume 0, Issue 0 (10-2024)
Abstract
AI has been integrated into human resource management, enabling the transformation of the field through automation of routine jobs, enhancement of decision-making, and the establishment of evidence-based strategies. The research study will systematically review the role of AI in HRM, focusing on applications related to recruitment, employee engagement, workforce planning, and retention. By analyzing ten peer-reviewed studies using advanced statistical analysis, the research underlines significant benefits of AI adoption: efficiency gains, increased employee satisfaction, and strategic workforce optimization. Yet, there are significant challenges in the form of algorithmic bias, data privacy concerns, and organizational readiness. Regression and correlation analyses show a strong positive relationship between AI use and HR performance metrics, with a greater effect on recruitment and retention. Though it has the huge potential for transformation, the findings have brought into focus the need for ethical guidelines, strong data protection, and employee upskilling for the full realization of AI's capabilities in HRM. This study provides actionable insights for organizations seeking to adopt AI technologies while addressing the associated challenges.
M. Kargari, Z. Rezaee, H. Khademi Zare ,
Volume 18, Issue 3 (11-2007)
Abstract
Abstract : In this paper a meta-heuristic approach has been presented to solve lot-size determination problems in a complex multi-stage production planning problems with production capacity constraint. This type of problems has multiple products with sequential production processes which are manufactured in different periods to meet customer’s demand. By determining the decision variables, machinery production capacity and customer’s demand, an integer linear program with the objective function of minimization of total costs of set-up, inventory and production is achieved. In the first step, the original problem is decomposed to several sub-problems using a heuristic approach based on the limited resource Lagrange multiplier. Thus, each sub-problem can be solved using one of the easier methods. In the second step, through combining the genetic algorithm with one of the neighborhood search techniques, a new approach has been developed for the sub-problems. In the third step, to obtain a better result, resource leveling is performed for the smaller problems using a heuristic algorithm. Using this method, each product’s lot-size is determined through several steps. This paper’s propositions have been studied and verified through considerable empirical experiments.
R. Farnoosh, B. Zarpak ,
Volume 19, Issue 1 (3-2008)
Abstract
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.
In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors, posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled image. This labeled image shows our segmented image with reduced noises. We presented this method in several experiments.
R. Tavakkoli-Moghaddam, M. Aryanezhad, H. Kazemipoor , A. Salehipour ,
Volume 19, Issue 1 (3-2008)
Abstract
Abstract : A tandem automated guided vehicle (AGV) system deals with grouping workstations into some non-overlapping zones , and assigning exactly one AGV to each zone. This paper presents a new non-linear integer mathematical model to group n machines into N loops that minimizes both inter and intra-loop flows simultaneously. Due to computational difficulties of exact methods in solving our proposed model, a threshold accepting (TA) algorithm is proposed. To show its efficiency, a number of instances generated randomly are solved by this proposed TA and then compared with the LINGO solver package employing the branch-and-bound (B/B) method. The related computational results show that our proposed TA dominates the exact algorithm when the size of instances grows.
Rahman Farnoosh, Behnam Zarpak,
Volume 19, Issue 1 (3-2008)
Abstract
K. Shahanaghi, V.r. Ghezavati,
Volume 19, Issue 4 (12-2008)
Abstract
In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical models, traveling time between customers and facilities is assumed to be in a deterministic way and a customer is assumed to be covered completely if located within the critical coverage of the facility and not covered at all outside of the critical coverage. Indeed, solutions obtained are so sensitive to the determined traveling time. Therefore, we consider covering or not covering for customers in a probabilistic way and not certain which yields more flexibility and practicability for results and model. Considering this assumption, we maximize the total expected demand which is covered. To solve such a stochastic nonlinear model efficiently, simulation and genetic algorithm are integrated to produce a hybrid intelligent algorithm. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
, , ,
Volume 20, Issue 1 (5-2009)
Abstract
The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.
S. J Sadjadi , Mir.b.gh. Aryanezhad , H.a. Sadeghi ,
Volume 20, Issue 3 (9-2009)
Abstract
We present an improved implementation of the Wagner-Whitin algorithm for economic lot-sizing problems based on the planning-horizon theorem and the Economic- Part-Period concept. The proposed method of this paper reduces the burden of the computations significantly in two different cases. We first assume there is no backlogging and inventory holding and set-up costs are fixed. The second model of this paper considers WWA when backlogging, inventory holding and set-up costs cannot be fixed. The preliminary results also indicate that the execution time for the proposed method is approximately linear in the number of periods in the planning-horizon .
M. Yaghini , J. Lessan , H. Gholami Mazinan ,
Volume 21, Issue 1 (6-2010)
Abstract
M. Yaghini, N. Ghazanfari,
Volume 21, Issue 2 (5-2010)
Abstract
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the optimization property of tabu search and the local search capability of k-means algorithm together. The contribution of proposed algorithm is to produce tabu space for escaping from the trap of local optima and finding better solutions effectively. The Tabu-KM algorithm is tested on several simulated and standard datasets and its performance is compared with k-means, simulated annealing, tabu search, genetic algorithm, and ant colony optimization algorithms. The experimental results on simulated and standard test problems denote the robustness and efficiency of the algorithm and confirm that the proposed method is a suitable choice for solving data clustering problems.
Mohammad Mahdavi Mazdeh, Ali Khan Nakhjavani , Abalfazl Zareei,
Volume 21, Issue 2 (5-2010)
Abstract
This paper deals with minimization of tardiness in single machine scheduling problem when each job has two different due-dates i.e. ordinary due-date and drop dead date. The drop dead date is the date in which jobs’ weights rise sharply or the customer cancels the order. A linear programming formulation is developed for the problem and since the problem is known to be NP-hard, three heuristic algorithms are designed for the problem based on Tabu search mechanism. Extensive numerical experiments were conducted to observe and compare the behavior of the algorithms in solving the problem..
R. Ramezanian, M.b. Aryanezhad , M. Heydari,
Volume 21, Issue 2 (5-2010)
Abstract
In this paper, we consider a flow shop scheduling problem with bypass consideration for minimizing the sum of earliness and tardiness costs. We propose a new mathematical modeling to formulate this problem. There are several constraints which are involved in our modeling such as the due date of jobs, the job ready times, the earliness and the tardiness cost of jobs, and so on. We apply adapted genetic algorithm based on bypass consideration to solve the problem. The basic parameters of this meta-heuristic are briefly discussed in this paper. Also a computational experiment is conducted to evaluate the performance of the implemented methods. The implemented algorithm can be used to solve large scale flow shop scheduling problem with bypass effectively .
Volume 21, Issue 3 (9-2010)
Abstract
In this paper an Ant Colony (ACO) algorithm is developed to solve aircraft recovery while considering disrupted passengers as part of objective function cost. By defining the recovery scope, the solution always guarantees a return to the original aircraft schedule as soon as possible which means least changes to the initial schedule and ensures that all downline affects of the disruption are reflected. Defining visibility function based on both current and future disruptions is one of our contributions in ACO which aims to recover current disruptions in a way that cause less consequent disruptions. Using a real data set, the computational results indicate that the ACO can be successfully used to solve the airline recovery problem .
Arash Motaghedi-Larijani, Kamyar Sabri-Laghaie , Mahdi Heydari,
Volume 21, Issue 4 (12-2010)
Abstract
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optimal solutions in a reasonable run time. The algorithm utilizes from a local search heuristic for improving the chance of obtaining more number of global Pareto-optimal solutions. The solution method uses from a perturbed global criterion function for guiding the search direction of the hybrid algorithm. Computational experiences show that the hybrid algorithm has superior performance in contrast to previous studies .
Mohammad Bagher Fakhrzad, Mitra Moobed ,
Volume 21, Issue 4 (12-2010)
Abstract
Managing products’ end-of-life and recovery of used products is gaining significant importance during last years. Therefore, managing the reverse flow of products can be an important potential for winning consumers in future competitive markets. In this context, establishing reverse logistics networks is becoming a main problem in reverse supply chains. Genetic Algorithm (GA) is utilized to solve the proposed NP-hard problem and find the best possible design for different facilities. In order to test the applicability of proposed GA, we suppose a tire reverse logistic case and solve the problem. The results show that the least cost will be achieved by using the free space of distribution centers and integrating collection and inspection centers within them. In addition, we suggest using hybrid algorithm in future allocation problems to obtain best solutions .
Mohammad Ali Farajian , Shahriar Mohammadi ,
Volume 21, Issue 4 (12-2010)
Abstract
The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily transaction records. Few works have focused on analyzing of bank databases from the viewpoint of customer behavioral analyze. This study presents a new two-stage frame-work of customer behavior analysis that integrated a K-means algorithm and Apriori association rule inducer. The K-means algorithm was used to identify groups of customers based on recency, frequency, monetary behavioral scoring predicators it also divides customers into three major profitable groups of customers. Apriori association rule inducer was used to characterize the groups of customers by creating customer profiles. Identifying customers by a customer behavior analysis model is helpful characteristics of customer and facilitates marketing strategy development .
M. Yaghini, M. Momeni, M. Sarmadi ,
Volume 22, Issue 1 (3-2011)
Abstract
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, two hybrid efficient and effective metaheuristic algorithms are developed. The simulated annealing and ant colony optimization algorithms are combined with the local search methods. To evaluate the proposed algorithms, the standard problems with different sizes are used. The algorithms parameters are tuned by design of experiments approach and the most appropriate values for the parameters are adjusted. The performance of the proposed algorithms is analyzed by quality of solution and CPU time measures. The results show high efficiency and effectiveness of the proposed algorithms .
Hossein Sadeghi, Mahdi Zolfaghari , Mohamad Heydarizade,
Volume 22, Issue 1 (3-2011)
Abstract
This paper aimed at estimation of the per capita consumption of electricity in residential sector based on economic indicators in Iran. The Genetic Algorithm Electricity Demand Model (GAEDM) was developed based on the past data using the genetic algorithm approach (GAA). The economic indicators used during the model development include: gross domestic product (GDP) in terms of per capita and real price of electricity and natural gas in residential sector. Three forms of GAEDM were developed to estimate the electricity demand. The developed models were validated with actual data, and the best estimated model was selected on base of evaluation criteria. The results showed that the exponential form had more precision to estimate the electricity demand than two other models. Finally, the future estimation of electricity demand was projected between 2009 and 2025 by three forms of the equations linear, quadratic and exponential under different scenarios .
M. Mohammadi, R. Tavakkoli-Moghaddam, A. Ghodratnama , H. Rostami ,
Volume 22, Issue 3 (9-2011)
Abstract
Hub covering location problem, Network design, Single machine scheduling, Genetic algorithm, Shuffled frog leaping algorithm |
Hub location problems (HLP) are synthetic optimization problems that appears in telecommunication and transportation networks where nodes send and receive commodities (i.e., data transmissions, passengers transportation, express packages, postal deliveries, etc.) through special facilities or transshipment points called hubs. In this paper, we consider a central mine and a number of hubs (e.g., factories) connected to a number of nodes (e.g., shops or customers) in a network. First, the hub network is designed, then, a raw materials transportation from a central mine to the hubs (i.e., factories) is scheduled. In this case, we consider only one transportation system regarded as single machine scheduling. Furthermore, we use this hub network to solve the scheduling model. In this paper, we consider the capacitated single allocation hub covering location problem (CSAHCLP) and then present the mixed-integer programming (MIP) model. Due to the computational complexity of the resulted models, we also propose two improved meta-heuristic algorithms, namely a genetic algorithm and a shuffled frog leaping algorithm in order to find a near-optimal solution of the given problem. The performance of the solutions found by the foregoing proposed algorithms is compared with exact solutions of the mathematical programming model .
Mahdi Karbasian, Saeed Abedi,
Volume 23, Issue 1 (3-2012)
Abstract
One of the main principles of the passive defense is the principle of site selection. In this paper, we propose a multiple objective nonlinear programming model that considers the principle of the site selection in terms of two qualitative and quantitative aspects. The purpose of the proposed model is selection of the place of key production facilities of a system in which not only it observes the dispersion principle but also reduces the system transportation costs. Moreover, the proposed model tries to select the sites that can fulfill other elements of site selection as well as dispersion in a way that it increases the trustworthiness of the selected network. For solving the proposed model we used the Genetic Algorithm integrated with TOPSIS method.