Showing 7 results for Discount
Behin Elahi, Seyed Mohammad Seyed-Hosseini, Ahmad Makui,
Volume 22, Issue 2 (6-2011)
Abstract
Supplier selection, Multi-objective decision making, Fuzzy Compromise programming, Supply chain management, Quantity discount . |
Supplier selection is naturally a complex multi-objective problem including both quantitative and qualitative factors. This paper deals with this issue from a new view point. A quantity discount situation, which plays a role of motivator for buyer, is considered. Moreover, in order to find a reasonable compromise solution for this problem, at first a multi-objective modeling is presented. Then a proposed fuzzy compromise programming is utilized to determine marginal utility function for each criterion. Also, group decision makers’ preferences have taken into account and the weight of each criterion has been measured by forming pair-wise comparison matrixes. Finally the proposed approach is conducted for a numerical example and its efficacy and efficiency are verified via this section. The results indicate that the proposed method expedites the generation of compromise solution .
T.b. Pankhania, V.k. Modi,
Volume 22, Issue 3 (9-2011)
Abstract
For any organization sound marketing strategy and quality assurance play vital role in the growth of the organization. The price, quality and service, service centers, friendly attitude, Discounts on sales, esthetics, store location and appearance, ease of operations, guarantees and warranties, adopting new ideas, and flexible payments terms were considered to study the perceptions of the respondents. The ultimate aim is to uphold the turnover of the organization and to create good market penetration of the goods produced in highly competitive business world .
Vorya Zarei, Iraj Mahdavi, Reza Tavakkoli-Moghaddam, Nezam Mahdavi-Amiri,
Volume 24, Issue 1 (2-2013)
Abstract
The existing works considering the flow-based discount factor in the hub and spoke problems, assume that increasing the amount of flow passing through each edge of network continuously decreases the unit flow transportation cost. Although a higher volume of flow allows for using wider links and consequently cheaper transportation, but the unit of flow enjoys more discounts, quite like replacing the current link by a cheaper link type (i.e., increasing the volume of flow without changing the link type would not affects the unit flow transportation cost). Here, we take a new approach, introducing multi-level capacities to design hub and spoke networks, while alternative links with known capacities, installation costs and discount factors are available to be installed on each network edge. The flow transportation cost and link installation cost are calculated according to the type of links installed on the network edges thus, not only the correct optimum hub location and spoke allocation is determined, but also the appropriate link type to be installed on the network edges are specified. The capacitated multiple allocation p-hub median problem (CMApHMP) using the multi-level capacity approach is then formulated as a mixed-integer linear program (MILP). We also present a new MILP for the hub location problem using a similar approach in order to restrict the amount of flow transmitting through the hubs. Defining diseconomies of scale for each hub type, the model is to present congestion at the hubs and balance the transmitting flow between the hubs. Two new formulations are presented for both the p-hub median and the hub location problems which requiring a flow between two non-hub nodes to be transferred directly, when a direct link between the nodes is available. These models are useful for the general cost structure where the costs are not required to satisfy the triangular inequality. Direct links between non-hub nodes are allowed in all the proposed formulations.
Mohammad Khalilzadeh, Alborz Hajikhani, Seyed Jafar Sadjadi,
Volume 28, Issue 1 (3-2017)
Abstract
The present paper aims to propose a fuzzy multi-objective model to allocate order to supplier in uncertainty conditions and for multi-period, multi-source, and multi-product problems at two levels with wastages considerations. The cost including the purchase, transportation, and ordering costs, timely delivering or deference shipment quality or wastages which are amongst major quality aspects, partial coverage of suppliers in respect of distance and finally, suppliers weights which make the products orders more realistic are considered as the measures to evaluate the suppliers in the proposed model. Supplier's weights in the fifth objective function are obtained using fuzzy TOPSIS technique. Coverage and wastes parameters in this model are considered as random triangular fuzzy number. Multi-objective imperial competitive optimization (MOICA) algorithm has been used to solve the model,. To demonstrate applicability of MOICA, we applied non-dominated sorting genetic algorithm (NSGA-II). Taguchi technique is executed to tune the parameters of both algorithms and results are analyzed using quantitative criteria and performing parametric.
Ali Mohtashami, Alireza Alinezhad,
Volume 28, Issue 3 (9-2017)
Abstract
In this article, a multi objective model is presented to select and allocate the order to suppliers in uncertainty condition and in a multi source, multi customer and multiproduct case in a multi period state at two levels of supply chain. Objective functions considered in this study as the measures to evaluate suppliers are cost including purchase, transportation and ordering costs, timely delivering, shipment quality or wastages which are amongst major quality aspects, partial and general coverage of suppliers in respect of distance and finally suppliers weights making the products orders amount more realistic. The major limitations are price discount for products by suppliers which are calculated using signal function. In addition, suppliers weights in the fifth objective function is calculated using fuzzy Topsis technique. Lateness and wastes parameters in this model are considered as uncertain and random triangular fuzzy number. Finally the multi objective model is solved using two multi objective algorithms of Non-dominated Sorting Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO) and the results are analyzed using quantitative criteria Taguchi technique was used to regulate the parameters of two algorithms.
Mojtaba Salehi, Haniyeh Rezaei,
Volume 30, Issue 2 (6-2019)
Abstract
Amin Amini, Alireza Alinezhad, Davood Gharakhani,
Volume 35, Issue 2 (6-2024)
Abstract
The selection of a sustainable supplier is a multi-criteria decision-making issue that covers a range of criteria (quantitative-qualitative). Selecting the most eco-friendly suppliers requires balancing tangible and intangible elements that may be out of sync. The problem gets more complicated when volume discounts are taken into account, as the buyer needs to decide between two issues: 1) What are the best sustainable suppliers? 2) Which amount needs to be bought from each of the selected eco-friendly suppliers? In current study a combined attitude of best-worst method (BWM) ameliorated via multi-objective mixed integer programming (MOMIP) and rough sets theory is developed. The aim of this work is to contemporaneously ascertain the order quantity allocated to these suppliers in the case of multiple sourcing, multiple products with multiple criteria and with capacity constraints of suppliers and the number of suppliers to employ. In this situation, price reductions are offered by suppliers based on add up commerce volume, not on the amount or assortment of items acquired from them. Finally, a solution approach is proposed to solve the multi-objective model, and the model is demonstrated using a case study in Iran Khodro Company (IKCO). The results indicate that ISACO is the most sustainable supplier and the most orders are assigned to this supplier.