Search published articles


Showing 13 results for Failure

M. Shishehsaz ,
Volume 18, Issue 4 (12-2007)
Abstract

Abstract : The effect of a bond failure and its extent is studied on stress concentration in long fibers as well as stress distribution in short fibers and their surrounding matrix bays. The material is assumed to be a finite width hybrid composite lamina which is subjected to a tensile load of magnitude "P" at infinity. The surrounding matrix is assumed to take only shear (shear-lag theory). The bay adjacent to the first intact filament is allowed to experience a bond failure of size 2d . This failure is due to excessive shear load in the matrix which exceeds the fiber-matrix bond strength. The matrix at this zone may or may not experience yielding. The short fibers are simulated by assuming two successive breaks along each filament. The effect of bond failure length on short fiber load bearing capability, as well as stress concentration in the first intact filament is fully investigated. The effect of hybridization, in presence of bond failure is also examined on short fiber load bearing behavior.

  


Kamran Shahanaghi, Hamid Babaei , Arash Bakhsha,
Volume 20, Issue 1 (5-2009)
Abstract

In this paper we focus on a continuously deteriorating two units series equipment which its failure can not be measured by cost criterion. For these types of systems avoiding failure during the actual operation of the system is extremely important. In this paper we determine inspection periods and maintenance policy in such a way that failure probability is limited to a pre-specified value and then optimum policy and inspection period are obtained to minimize long-run cost per time unit. The inspection periods and maintenance policy are found in two phases. Failure probability is limited to a pre-specified value In the first phase, and in the second phase optimum maintenance thresholds and inspection periods are obtained in such a way that minimize long-run expected.
Mahdi Karbasian, Zoubi Ibrahim,
Volume 21, Issue 2 (5-2010)
Abstract

  This expository article shows how the maximum likelihood estimation method and the Newton-Raphson algorithm can be used to estimate the parameters of the power-law Poisson process model used to analyze data from repairable systems .


A. Doostparast Torshizi, S.r. Hejazi,
Volume 21, Issue 2 (5-2010)
Abstract

In highly competitive industrial market, the concept of failure analysis is an unavoidable fact in complex industrial systems. Reliability of such systems not only depends on the reliability of each element of these systems, but also depends on occurrence of sequence of failures. In this paper, a novel approach to sequential failure analysis is proposed which is based upon fuzzy logic and the concept of Petri nets which is utilized to track all the risky behaviors of the system and to determine the potential failure sequences and then prioritizing them in order to perform corrective actions. The process of prioritizing failure sequences in this paper is done by a novel similarity measure between generalized fuzzy numbers. The proposed methodology is demonstrated with an example of two automated machine tools and two input/output buffer stocks.
, , ,
Volume 23, Issue 2 (6-2012)
Abstract

In recent years, Many manufacturing industries for promoting their efficiency have tended to use the automatic manufacturing systems. Expanding automatic systems and to increase their complexity are representing the necessity of studying a proper functional quality and using reliable equipment in such systems more than ever. In this direction, the technique of fault tree analysis (FTA), along with using other techniques such as failure mode and effect analysis (FMEA) reveals the incorrect performance states (modes) in system in order to know these modes exactly may prevent their occurance and increase their function quality. In this study, the approaches may increase the reliability of performance in an industrial robot are studied by FTA technique as a case study to show improvement in performance of equipments on automatic systems to reduce their destruction (fault) during the work, and finally access to an automatic manufacturing systems with high reliability.
Mr. Mohammad Rohaninejad, Dr. Amirhossein Amiri, Dr. Mahdi Bashiri,
Volume 26, Issue 3 (9-2015)
Abstract

This paper addresses a reliable facility location problem with considering facility capacity constraints. In reliable facility location problem some facilities may become unavailable from time to time. If a facility fails, its clients should refer to other facilities by paying the cost of retransfer to these facilities. Hence, the fail of facilities leads to disruptions in facility location decisions and this problem is an attempt to reducing the impact of these disruptions. In order to formulate the problem, a new mixed-integer nonlinear programming (MINLP) model with the objective of minimizing total investment and operational costs is presented. Due to complexity of MINLP model, two different heuristic procedures based on mathematical model are developed. Finally, the performance of the proposed heuristic methods is evaluated through executive numerical example. The numerical results show that the proposed heuristic methods are efficient and provide suitable solutions.

\"AWT


Mahdi Karbasian, Ali Eghbali Babadi, Fatemeh Hasani,
Volume 28, Issue 2 (6-2017)
Abstract

Abstract

The reliability and safety of any system is the most important qualitative characteristic of a system. This qualitative characteristic is of particular importance in systems whose functions are under various stresses, such as high temperature, high speed, high pressure, etc. A considerable point, which is rarely taken into account when calculating the reliability and safety of systems, is the presence of dependency among subsystems, and this dependency causes various failures in a system, one of the most important of which is the common cause failure (CCF). Failing to consider common cause failures in the calculation of system reliabilities, leads to optimistic estimations of system reliability rates, which results in too much trust in the system. In this paper, first we deal with identifying the reliability of the input of a dynamic positioning system consisting of different environmental sensors and various positioning systems with the aid of PBS and FFBD techniques. Then, we will calculate and allocate the above-mentioned reliability with the aid of a RBD. The common cause failures of different subsystems were considered in calculating the reliability of the previously mentioned system, with the aid of IEC 61508 standard, and then the degree of the effectiveness of common cause failures on the reliability of the studied system, was obtained. Finally, by considering different assumptions for the system under study, it was proved that the less the amount of the reliability of dependent components is, the higher the effectiveness of common cause failures on the system reliability will be


Mahdi Karbasian, Maryam Mohammadi, Mohammad Mortazavi,
Volume 29, Issue 2 (6-2018)
Abstract

Reliability allocation has an essential connection to design for reliability and is an important activity in the product design and development process. In determining the reliability of subsystems or components on the basis of goal reliability, attention must be paid to failure effect, failure information, and improvement opportunities based upon real potentials for reliability improvement. In the light of the fact that ignoring dependent failures inflicts irreversible damage on systems, and that redundant systems are vulnerable to Common Cause Failure (CCF) as well as independent failure, attention must be paid not only to components’ independent failure information, but also to CCF information in conducting reliability allocation for such systems. To consider improved failure rate alone cannot ensure the achievement of the goal reliability in question, because if the CCF occurrence exceeds a certain limit, the system’s reliability will certainly fail to match the goal reliability. This paper is an attempt to develop a method for reliability allocation of series-parallel systems by considering CCF, in such a way that potentials and priorities of reliability improvement are taken into consideration. The proposed method consists of four stages: 1) adding a series component to the redundant system in order to investigate CCF, 2) conducting reliability allocation for series components and the redundant system, 3) conducting reliability allocation for redundant system components, and 4) analyzing the failure rate of system components. The proposed method is run for water pumping systems and the results are evaluated. In this method, in addition to the improved failure rate of system components, the improved rate of CCF is computed, too. This proves instrumental and crucial for system designers in feasibility studies and conceptual design.
 

Zahra Karimi Ezmareh, Gholam Hossein Yari,
Volume 30, Issue 2 (6-2019)
Abstract

In this paper, a new distribution that is highly applicable in the fields of reliability and economics is introduced. Also the parameters of this distribution is estimated using two methods of Maximum Likelihood and Bayes with two prior distributions Weibull and Uniform, and these two methods are compared using Monte-Carlo simulation. Finally, this new model is fit on the real data(with the failure time of 84 aircraft) and some of comparative criteria are calculated to confirm superiority of the proposed model compared to other models.
Rezvan Rezaei, Gholam Hossein Yari, Zahra Karimi Ezmareh,
Volume 31, Issue 3 (9-2020)
Abstract

In this paper, a new five-parameter distribution is proposed that is called MarshallOlkin Gompertz Makeham distribution(MOGM). This new model is applicable in analysis lifetime data, engineering and actuarial. In this research, some properties of the new model such as mode, moment, Reyni entropy, Tsallis entropy, quantile function and the hazard rate function which is decreasing and unimodal, are studied. The unknown parameters of the MOGM distribution are estimated using the maximum likelihood and Bayes methods. Then these methods are compared using Monte Carlo simulation and the best estimator is proposed. Finally, applications of the proposed model are illustrated to show its usefulness.
Ali Qorbani, Yousef Rabbani, Reza Kamranrad,
Volume 34, Issue 4 (12-2023)
Abstract

Prediction of unexpected incidents and energy consumption are some industry issues and problems. Single machine scheduling with preemption and considering failures has been pointed out in this study. Its aim is to minimize earliness and tardiness penalties by using job expansion or compression methods. The present study solves this problem in two parts. The first part predicts failures and obtains some rules to correct the process, and the second includes the sequence of single-machine scheduling operations. The failure time is predicted using some machine learning algorithms includes: Logistic Regression, Decision Tree, Random Forest, Support Vector Machine (SVM), Naïve Bayes, and k-nearest neighbors. Results of comparing the algorithms, indicate that the decision tree algorithm outperformed other algorithms with a probability of 70% in predicting failure. In the second part, the problem is scheduled considering these failures and machine idleness in a single-machine scheduling manner to achieve an optimal sequence, minimize energy consumption, and reduce failures. The mathematical model for this problem has been presented by considering processing time, machine idleness, release time, rotational speed and torque, failure time, and machine availability after repair and maintenance. The results of the model solving, concluded that the relevant mathematical model could schedule up to 8 jobs within a reasonable time and achieve an optimal sequence, which could reduce costs, energy consumption, and failures. Moreover, it is suggested that further studies use this approach for other types of scheduling, including parallel machine scheduling and flow job shop scheduling. Metaheuristic algorithms can be used for larger dimensions. 

Mansour Abedian, Amirhossein Karimpour, Morteza Pourgharibshahi, Atefeh Amindoust,
Volume 35, Issue 2 (6-2024)
Abstract

The area coverage of machines on the production line to address the scheduling and routing problem of autonomous guided vehicles (AGV) is an innovative way to improve productivity in manufacturing enterprises. This paper proposed a new model for the optimal area coverage of machines in the production line by applying a single AGV to minimize both the transfer costs and the number of breakpoints of AGV. One of the unique advantages of the area coverage employed in the present study is that it minimizes transfer costs and breakpoints, and makes it possible to provide service for several machines simultaneously since the underlying assumption was finding a path to ensure that every point in a given workspace is covered at least once. Since rail AGV is used in this study, AGV can only pass horizontal and vertical distances in the production line. The reversal of the AGV path in vertical and horizontal distances implies failure and breakpoint in the present paper. The simulation results confirm the feasibility of the proposed method.

Fakhri Ikhwanul Alifin, Bermawi Priyatna Iskandar, Nadia Fasa, Fransisca Debora,
Volume 35, Issue 2 (6-2024)
Abstract

This study develops warranty cost models for repairable products subject to Lemon Laws, encompassing Critical and Non-Critical components forming a multi-component system. Failures can arise naturally or be induced by other components (i.e., failure interaction), defining a lemon if recurrent failures reach a threshold (k) during the warranty period. A lemon declaration triggers a refund or replacement by the manufacturer. Four warranty cost models are proposed from the manufacturer's standpoint, considering failure mechanisms. Increasing failure thresholds in the warranty scheme substantially decreases warranty cost rates. For instance, a threshold (k) of 5 in refund and replacement schemes yields the lowest cost rates of 33.7159 and 25.8249, respectively. Failure interactions escalate total warranty costs; for instance, in a refund scheme (k = 5), costs with failure interaction reach 31.0169 compared to 28.7603 without. Similar trends apply to replacement schemes. Moreover, a lower warranty cost rate will extend the period, indicating regulation fulfillment due to a closer warranty period to the Lemon period. Sensitivity analysis also underscores the role of higher reliability in reducing warranty costs and complying with Lemon Laws. Finally, maintenance strategies and product reliability are emphasized to fulfill Lemon Laws with minimal costs, i.e., fewer warranty claims.


Page 1 from 1