Search published articles


Showing 8 results for Goal Programming

Mostafa Shirinfar, Hassan Haleh,
Volume 22, Issue 4 (12-2011)
Abstract

In this study, an outsourcer evaluation and management system is developed for a manufacturing company by use of Fuzzy goal programming (FGP). A first phase of the methodology evaluation criteria for outsources and the objectives of the company are determined. Considering the fuzziness in the decision data, linguistic variables that can be expressed in generalized fuzzy number are used. The propose approach is utilized from fuzzy sets, Analytic Network Process (ANP), fuzzy TOPSIS and Preference Ranking Organization method for enrichment evaluations (PROMETHEE) approaches. Evaluation criteria for this problem are weighted by Fuzzy ANP approach then in the Fuzzy TOPSIS and Fuzzy PROMETHEE approaches. At the second phase the FGP model developed selects the most appropriate outsourcers suitable to be strategic partners with the company and simultaneously allocates the quantities to be ordered to them. At the end, gives the computational results .


, ,
Volume 23, Issue 2 (6-2012)
Abstract

The problem of staff scheduling at a truck hub for loading and stripping of the trucks is an important and difficult problem to optimize the labor efficiency and cost. The trucks enter the hub at different hours a day, in different known time schedules and operating hours. In this paper, we propose a goal programming to maximize the labor efficiency via minimizing the allocation cost. The proposed model of this paper is implemented for a real-world of a case study and the results are analyzed.
Yahia Zare Mehrjerdi,
Volume 25, Issue 3 (7-2014)
Abstract

Abstract It is the purpose of this article to introduce a linear approximation technique for solving a fractional chance constrained programming (CC) problem. For this purpose, a fuzzy goal programming model of the equivalent deterministic form of the fractional chance constrained programming is provided and then the process of defuzzification and linearization of the problem is started. A sample problem is presented for clarification purposes.
Ali Salmasnia, Ebrahim Ghasemi, Hadi Mokhtari,
Volume 27, Issue 4 (12-2016)
Abstract

This study aims to select optimal maintenance strategy for components of an electric motor of the National Iranian Oil Refining and Distribution Company. In this regard, a method based on revised multi choice goal programming and analytic hierarchy process (AHP) is presented. Since improving the equipment reliability is an important issue, reliability centered maintenance (RCM) strategies are introduced in this paper. Furthermore, on one hand, we know that maintenance cost consists of a considerable percentage of production cost; on the other hand, the risk of equipment failure is a main factor on personnel’s safety. Consequently, the cost and risk factors are selected as important criteria of maintenance strategies.


Sina Nayeri, Ebrahim Asadi-Gangraj, Saeed Emami,
Volume 29, Issue 1 (3-2018)
Abstract

Natural disasters, such as earthquakes, tsunamis, and hurricanes cause enormous harm during each year. To reduce casualties and economic losses in the response phase, rescue units must be allocated and scheduled efficiently, such that it is a key issues in emergency response. In this paper, a multi-objective mix integer nonlinear programming model (MOMINLP) is proposed to minimize sum of weighted completion times of relief operations as first objective function and makespan as second objective with considering time-window for incidents. The rescue units also have different capability and each incident just can be allocated to a rescue unit that has the ability to do it. By assuming the incidents and rescue units as jobs and machine, respectively, the research problem can be formulated as a parallel-machine scheduling problem with unrelated machines. Multi-Choice Goal programming (MCGP) is applied to solve research problem as single objective problem. The experimental results shows the superiority of the proposed approach to allocate and schedule the rescue units in the natural disasters.


Saeed Dehnavi, Ahmad Sadegheih,
Volume 31, Issue 1 (3-2020)
Abstract

In this paper, an integrated mathematical model of the dynamic cell formation and production planning, considering the pricing and advertising decision is proposed. This paper puts emphasis on the effect of demand aspects (e.g., pricing and advertising decisions) along with the supply aspects (e.g., reconfiguration, inventory, backorder and outsourcing decisions) in developed model. Due to imprecise and fuzzy nature of input data such as unit costs, capacities and processing times in practice, a fuzzy multi-objective programming model is proposed to determine the optimal demand and supply variables simultaneously. For this purpose, a fuzzy goal programming method is used to solve the equivalent defuzzified multi-objective model. The objective functions are to maximize the total profit for firm and maximize the utilization rate of machine capacity. The proposed model and solution method is verified by a numerical example.
Mojtaba Salehi, Efat Jabarpour,
Volume 32, Issue 3 (9-2021)
Abstract

Project scheduling is one of the most important and applicable concepts of project management. Many project-oriented companies and organizations apply variable cost reduction strategies in project implementation. Considering the current business environments, in addition to lowering their costs, many companies seek to prevent project delays. This paper presents a multi-objective fuzzy mathematical model for the problem of project scheduling with the limitation of multi-skilled resources able to change skills levels, optimizing project scheduling policy and skills recruitment. Given the multi objectivity of the model, the goal programming approach was used, and an equivalent single-objective model was obtained. Since the multi-skilled project scheduling is among the NP-Hard problems and the proposed problem is its extended state, so it is also an NP-Hard problem. Therefore, NSGA II and MOCS meta-heuristic algorithms were used to solve the large-sized model proposed using MATLAB software. The results show that the multi-objective genetic algorithm performs better than the multi-objective Cuckoo Search in the criteria of goal solution distance, spacing, and maximum performance enhancement.
Fatemeh Hajisoltani, Mehdi Seifbarghy, Davar Pishva,
Volume 34, Issue 1 (3-2023)
Abstract

The main objective of this research is effective planning as well as greener production and distribution of mineral products in supply chain network. Through a case study in cement industry, it considers the design of the mining supply chain network including several factories with a number of production lines and multiple distribution centers. It leaves part of the transportation operation to contractor companies so as to enable the core company to better focus on its products’ quality and also create job opportunities to local people. It employs a multi-period and multi-product mixed integer linear programming model to both maximize the profit of the factory as well as minimize its carbon dioxide gas emissions which are released during cement production and transportation process. Due to the uncertainty of its cost parameters, fuzzy logic has been used for the modeling and solved via a novel fuzzy multi-choice goal programming approach. Sensitivity analysis has also been done on some key parameters. Comparing results of the model with those from the single-objective models, shows that the model has good efficiency and can be used by managers of mining industries such as cement. Although leaving part of the transportation operations to contractor companies increases the number of vehicles used by the contractor companies, its associated decrease in the number of required factory vehicles, improves both objectives of the model. This should be considered by the managers since on top of profit maximization, it can help them build an eco-friendly image. Mining industries generally generate significant amount of pollutions and companies that pay attention to different dimensions of their social responsibilities can remain stable in the competitive market.

Page 1 from 1