Search published articles


Showing 2 results for Operating Room

Sima Boosaiedi, Mohammad Reisi-Nafchi, Ghasem Moslehi,
Volume 33, Issue 2 (6-2022)
Abstract

Operating rooms have become the most important areas in hospitals because of the scarcity and cost of resources. The present study investigates operating room scheduling and rescheduling considering the priority of surgical patients in a specialized hospital. The ultimate purpose of scheduling is to minimize patient waiting time, surgeon idle time between surgeries, and penalties for deviations from operating room preferences. A mathematical programming model is presented to solve the problem. Because the problem is strongly NP-hard, two heuristic algorithms are presented. A heuristic algorithm based on a mathematical programming model with local search obtains near-optimal solutions for all the samples. The average relative deviation of this algorithm is 0.02%. In continuous, heuristic algorithms performance have been investigated by increasing the number of patients and reduce the number of recovery beds. Next, a rescheduling heuristic algorithm is presented to deal with real-time situations. This algorithm presents fewer changes resulting from rescheduling in comparison with the scheduling problem.
Javad Behnamian, A. Panahi,
Volume 34, Issue 2 (6-2023)
Abstract

Given the increasing human need for health systems and the costs of using such systems, the problem of optimizing health-related systems has attracted the attention of many researchers. One of the most critical cases in this area is the operating room scheduling. Much of the cost of health systems is related to operating room costs. Therefore, planning and scheduling of operating rooms can play an essential role in increasing the efficiency of health systems as well as reducing costs. Given the uncertain factors involved in such matters, attention to uncertainty in this problem is one of the most critical factors in the results. In this study, the problem of the daily scheduling of the operating room with uncertain surgical time was investigated. For minimizing overhead costs and maximizing the number of surgeries to reduce patients' waiting time, after introducing a mathematical model, a chance-constrained programming approach is used to deal with its uncertainty. In this study, also, a harmony search algorithm is proposed to solve the model because of its NP-Hardness. By performing the numerical analysis and comparing the presented algorithm result with a genetic algorithm, the results show that the proposed algorithm has a better performance.



Page 1 from 1