Search published articles


Showing 3 results for Stochastic Demand

A. Shariat Mohaymany , S.m.mahdi Amiripour,
Volume 20, Issue 3 (9-2009)
Abstract

Local bus network is the most popular transit mode and the only available transit mode in the majority of cities of the world. Increasing the utility of this mode which increases its share from urban trips is an important goal for city planners. Timetable setting as the second component of bus network design problem (network route design timetable setting vehicle assignment crew assignment) have a great impact on total travel time of transit passengers. The total travel time would effect on transit utility and transit share of urban trips. One of the most important issues in timetable setting is the temporal coverage of service during the day. The coverage of demand is an objective for setting timetables which has not been well studied in the literature. In this paper a model is developed in order to maximize the temporal coverage of bus network. The model considers demand variation during the day as well as the stochastic nature of demand. A distribution function is used instead of a deterministic value for demand. The model is then implemented to an imaginary case.
Ramin Sadeghian,
Volume 27, Issue 2 (6-2016)
Abstract

Generally ordering policies are done by two methods, including fix order quantity (FOQ) and fix order period (FOP). These methods are static and either the quantity of ordering or the procedure of ordering is fixing in throughout time horizon. In real environments, demand is varying in any period and may be considered as uncertainty. When demand is variable in any period, the traditional and static ordering policies with fix re-order points cannot be efficient. On the other hand, sometimes in real environments some costs may not be well-known or precise. Some costs such as holding cost, ordering cost and so on. Therefore, using the cost based inventory models may not be helpful. In this paper, a model is developed which can be used in the cases of stochastic and irregular demand, and also unknown costs. Also some attributes consisting of expected positive inventory level, expected negative inventory level and inventory confidence level are considered as objective functions instead the objective function of total inventory cost. A numerical example is also presented for more explanation.


Sujata Saha, Tripti Chakrabarti,
Volume 32, Issue 3 (9-2021)
Abstract

This paper aims to frame a two-player supply chain model with a production system's reliability influenced products’ defection rate.  Upon generating and inspecting the products, the producer reworks the defectives and sells the perfect and reworked items to a retailer providing him free products' delivery. The retailer stores both types of commodities in the respective showrooms of finite capacities and keeps the excess conforming products in a leased warehouse. Eventually, the formulation of these two partners' profit functions performed, and a numerical illustration demonstrates this model's applicability.   Results shows, hiring a storehouse is profitable for the retailer and the deterioration of the production system’s reliability impacts adversely on the manufacturer's profit.

Page 1 from 1