Volume 19, Issue 3 (September 2022)                   IJMSE 2022, 19(3): 1-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roostaei M, Aghajani H, Abbasi M, Abasht B. Wear Properties of Al/MoS2 Nanocomposite Coatings Created by Electro Spark Deposition on the Surface of Ti-6Al-4V Alloy. IJMSE 2022; 19 (3) :1-20
URL: http://ijmse.iust.ac.ir/article-1-2639-en.html
Abstract:   (12460 Views)
This study investigates the synthesis of Al/MoS2 nanocomposite coating by the electro spark deposition (ESD) method for its lubricating properties. ESD method was selected because it is a very easy, rapid, and cost-saving method and the resulting coating has a strong bonding with the substrate. As a substrate, a Ti-6Al-4V alloy sheet containing 6.12 % Al, 4.06 % V, 0.19% Fe, and 0.05 % Ni was used. For coating, an aluminum-molybdenum disulfide composite electrode in the form of a cylindrical rod was employed. Three frequencies of 5, 8, and 11 kHz, three current limits of 15, 25, and 35 amps, and three duty cycles of 50, 60, and 70% were used in the coating operation. AFM analysis was used to study the topography, morphology, and calculate roughness. The samples were then subjected to hardness tests. To determine the wear resistance of the samples, pin on disk tests were performed. XRD analysis was performed to identify the phases on the surface of the coated samples. SEM was used to examine the microstructure of the coating before and after wear testing, in order to determine the wear mechanism. The results indicated that the Al/MoS2 nanocomposite coating was synthesized on the substrate surface. The hardness of the reference sample is 353 Vickers, and that of the coated samples is about 200 Vickers. For the reference sample, the roughness was measured at 15.7 nm, and for the coated sample at 268.1 nm. As spark energy increased, the coefficient of friction increased by approximately 0.09. As spark energy increased, the wear rate increased by 27%. A significant increase in the Lancaster coefficient occurred around 5 joules of energy. According to the wear rate results, the sample with the lowest thickness wears 4% less than the sample with the highest thickness. The wear rate of sample 351170 is 78% lower than that of sample 150550.
Full-Text [PDF 1716 kb]   (2825 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb