Volume 19, Issue 4 (Desember 2022)                   IJMSE 2022, 19(4): 1-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

G B V K, Sreenivasulu G, C B M, M G A. Mechanical and Tribological Behavior of Aluminum Alloy LM13 Reinforced with Titanium Dioxide Metal Matrix Composites. IJMSE 2022; 19 (4) :1-15
URL: http://ijmse.iust.ac.ir/article-1-2688-en.html
Abstract:   (8120 Views)
In the present research work physical, mechanical and tribological behavior of Aluminum (Al) alloy LM13 reinforced with Nano-sized Titanium Dioxide (TiO2) particulates were fabricated, mechanical and tribological properties were investigated. The amount of nano TiO2 particulates in the composite was added from 0.5% to 2% in 0.5 weight percent (wt %) increments. The Al-LM13-TiO2 Metal Matrix Composites (MMCs) were prepared through the liquid metallurgical method by following the stir casting process. The different types of Al LM13-TiO2 specimens were prepared for conduction of Physical, Mechanical, and Tribological characteristics by ASTM standards. Microstructural images, hardness, tensile, and wear test results were used to evaluate the effect of TiO2 addition to Al LM13. Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffractometer (XRD) were used to examine the microstructure and distribution of particulates in the matrix alloy. In the Al LM13 matrix, microstructure analysis indicates a consistent distribution of reinforced nanoparticles. The attributes of the MMCs, including density, hardness, tensile strength, and wear resistance, were improved by adding up to 1 wt% TiO2. Fractured surfaces of tensile test specimens were studied using SEM pictures.  The standard pin-on-disc tribometer device was used to conduct the wear experiments; the tribological characteristics of unreinforced matrix and TiO2 reinforced composites were investigated. The composites’ wear resistance was increased by adding up to 1 wt% of TiO2.  The wear height loss of Al LM13-TiO2 composite increased when the sliding distance and applied load were increased. Overall, the Al LM13 with one wt% of TiO2 MMCs showed excellent Physical, Mechanical and Tribological characteristics among all the percentages considered in the present study.
Full-Text [PDF 2282 kb]   (6478 Downloads)    
Type of Study: Research Paper | Subject: Polymers

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb