Search published articles


Showing 6 results for Adeli

Bafghi M. Sh., Adeli M., Mohammadi Nikoo H.,
Volume 1, Issue 3 (Apr 2004)
Abstract

Two commercial methods are used for the production of strontium carbonate:1) Direct conversion of Celsetite to strontium carbonate by hot sodium carbonate,2) Carbothermic reduction of celestite with coal followed by water leaching of strontium sulfide(SrS) and its conversion to strontium carbonate.The present study has been made on the carbothermic reduction of celestite ores of Varamin (Iran) mines. Effects of temperature, time, pellet size, particle size of celestite ore, pellet compactness and type of reducing agent have been studied. In the range of 800-1100°C, reduction rate increases notably with temperature, which may mean that the reduction is predominantly chemical controlled. Activation energy of around 22.5 kcal/mol supports the idea of chemical control mechanism. Further support for this postulation is provided by the following facts:1) Increasing rate with carbon reactivity (graphite, coal, and charcoal)2) Small dependency of rate on pellet compactness.3) Small dependency of rate on pellet size
M. Adeli, M. Shekari, S. H. Seyedein, M. R. Aboutalebi,
Volume 7, Issue 2 (Spring 2010 2010)
Abstract

Combustion synthesis is a special thermophysico-chemical process applied for production of intermetallic compounds. In the present work, a reaction–diffusion numerical model was developed to analyze the combustion synthesis of aluminide intermetallics by self-propagating high-temperature synthesis process. In order to verify the reliability of the numerical model, an experimental setup was designed and used to perform the combustion synthesis of nickel and titanium aluminides. The developed model was further used to determine the temperature history of a powder mixture compact during self-propagating high-temperature synthesis. The effect of compact relative density on combustion temperature and wave propagation velocity was also studied.


M. Sheikhshab Bafghi, M. Karimi, M. Adeli,
Volume 10, Issue 4 (december 2013)
Abstract

In the present study, reduction of zinc oxide from the pellets made of steelmaking electric arc furnace dust has been investigated. Effects of such parameters as the type of carbon material (graphite, coke and charcoal) as well as time and temperature on the reduction reaction have been examined. The reduced (dimensionless) time method was applied to perform a kinetic analysis of the system. Experimental results showed that increasing the temperature in the range of 925-1150°C results in a remarkable increase in the reduction rate. It was also shown that the reduction process is controlled by chemical reaction. Meaningful difference in the activation energy values calculated for reduction with graphite (24.75 kcal/mol), coke (18.13 kcal/mol) and charcoal (11.52 kcal/mol) indicate the predominant role of chemical reaction (carbon gasification) in the overall reaction rate and its rate-controlling mechanism. Carbothermal reduction of pelletized EAF dust proved to be an efficient reduction method, so that above 90% reduction was achieved in about one hour at temperatures around 1100°C.
F Foadian, M Soltanieh, M Adeli, M Etminanbakhsh,
Volume 11, Issue 4 (December 2014)
Abstract

Metallic-intermetallic laminate (MIL) composites are promising materials for structural applications especially in the aerospace industry. One of the interesting laminate composites is the Ti-TiAl 3 multilayer. In this work, commercially pure sheets of aluminum and titanium with almost equal thickness of around 0.5 mm were explosively joined. The achieved multilayers were annealed at 630 ℃in different times so that an intermetallic layer was formed at the Ti/Al interface. The resulting microstructure was studied by optical and scanning electron microscopy and Energy Dispersive Spectroscopy (EDS). TiAl3 was the only intermetallic phase that was observed in all annealing times. The kinetics of the formation of TiAl 3 was investigated and compared to previous research studies performed on Ti-Al multilayers which were fabricated using methods other than explosive welding.
H. Darrudi, M. Adelifard,
Volume 16, Issue 1 (March 2019)
Abstract

In this paper we have investigated the physical properties of reduced graphene oxide (RGO) thin films prepared at various substrate temperatures of 230, 260, 290, 320 and 350 oC using spray pyrolysis technique. We have compared these films from various viewpoints, including structural, morphological, optical, electrical and thermos-electrical properties. XRD analysis showed a phase shift from graphene oxide (GO) to RGO due to elevate the substrate temperature from 200 oC to higher temperatures. FESEM images of RGO thin films reveal that a stacked image of irregular and folding nanosheets, and rod-like features at temperatures below and above 290 oC; respectively. Optical studies showed that the layers have a relatively high absorption coefficient (∼0.8×104 to 1.7×104 cm−1) in the visible range, with an optical band gap of 1.67–1.88 eV. The Hall effect data showed that all samples have a p-type conductivity with a hole concentration of ∼1015 cm−3, and sheet resistance values of about 106 Ω/sq, in agreement with previous reports. The thermoelectric measurements revealed that with increasing applied temperature gradient between the two ends of the samples, the thermoelectric electromotive force (emf) of the prepared RGO thin films increases.
Hadi Sharifidarabad, Alireza Zakeri, Mandana Adeli,
Volume 21, Issue 0 (IN PRESS 2024)
Abstract

The sensitivity of lead dioxide coating properties to the deposition conditions and electrolyte composition has allowed the preparation of coatings with different properties for different applications. In this study, the effects of electrolyte additives on the electrodeposition process were investigated using electrochemical measurements such as cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results showed that the presence of fluoride ions significantly reduce the possibility of TiO2 formation. The addition of copper ions not only prevents lead loss at the cathode, but also leads to the formation of copper oxide on the surface at initial stages, which hinders nucleation of PbO2. The presence of sodium dodecyl sulfate (SDS) also interferes with the nucleation process as it occupies active nucleation sites. The α-PbO2 interlayer prevents copper oxidation and solves the problem of lead dioxide nucleation. Finally, it was found that the simultaneous use of all additives together with the α-PbO2 interlayer has a positive effect on the coating process.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb