Search published articles


Showing 3 results for J. Vahdati Khaki

S.h.r. Fatemi Nayeri, J. Vahdati Khaki, M. R. Aboutalebi,
Volume 6, Issue 1 (winter 2009 2009)
Abstract

Abstract:A combination of mechanical activation and Differential Thermal Analysis (DTA) together with X-Ray Diffraction (XRD), and various microstractural characterization techniques were used to evaluate the starting reaction in the combustion synthesis of TiC-Al2O3 composite in TiO2-Al-C system. The mechanical activation was performed on the mixtures of two components of TiO2/Al, Al/C and TiO2/C and then the third component was added according to the stoichiometric reaction for 3TiC+2Al2O3 composite formation. The powder mixtures were heated up to 1450 °C under Argon atmosphere at a heating rate of 10 °C/min. The combustion synthesis temperature was observed to decrease from 962 °C to 649 °C after milling of TiO2/Al mixture for 16 hr. On the contrary, the mechanical activation of Al/C and TiO2/C mixtures for 16 hr made the reaction temperature increase to 995 °C and 1024 °C, respectively. The decrease in reaction temperature as a result of milling the TiO2/Al mixture could be due to an increase of TiO2 and Al interface area as confirmed by TEM micrographs and XRD patterns of milled powder mixture. In addition, DTA experiments showed that for the sample in which TiO2 and Al were mechanically activated the reaction occurred at the temperature even lower than that of Al melting point.
A. H. Emami, M. Sh. Bafghi, J. Vahdati Khaki, A. Zakeri,
Volume 6, Issue 2 (Spring 2009 2009)
Abstract

Abstract:

the changes of BET surface area of a mineral substance during intensive grinding process. Validity of the proposed

model was tested by the experiments performed using a natural chalcopyrite mineral as well as the published data. It

was shown that the model can predict the experimental results with a very good accuracy and can be used to predict

what may happen under the similar experimental conditions.

Based on experimental observations, a model has been developed to describe the effect of grinding time on

M.sh. Bafghi, A.h. Emami, A. Zakeri, J. Vahdati Khaki,
Volume 7, Issue 2 (Spring 2010 2010)
Abstract

Abstract:

has been investigated. It has been shown that the mechanism of leaching reaction is diffusion through the product layer

and does not undergo any change as a result of mechanical activation in a wide range of experimental conditions.

Leaching rate is strongly influenced by milling intensity and the effect of ball to powder mass ratio is stronger than

milling time. Curve fitting of experimental data shows that leaching rate constant is approximately a linear function

of ball to powder mass ratio, while it obeys a power function with regard to the milling time.

The kinetics of chalcopyrite leaching in a ferric sulfate media for raw and mechanically activated samples


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb