Showing 2 results for Mohamadian
M. Abbasalizadeh, R. Hasanzadeh, Z. Mohamadian, T. Azdast, M. Rostami,
Volume 15, Issue 4 (December 2018)
Abstract
Shrinkage is one of the most important defects of injection molded plastic parts. Injection molding processing parameters have a significant effect on shrinkage of the produced parts. In the present study, the effect of different injection parameters on volumetric shrinkage of two polymers (high-density polyethylene (HDPE) semi-crystalline thermoplastics and polycarbonate (PC) as a representative of amorphous thermoplastics) was studied. Samples under different processing conditions according to a L27 orthogonal array of Taguchi experimental design approach were injected. Effect of material crystallinity on the shrinkage of injected samples was investigated. Obtained results revealed that semi-crystalline thermoplastics have larger shrinkage values in comparison with amorphous thermoplastics. Shrinkages of injected samples were also studied along and across the flow directions. Results showed that the flow path can dramatically affect the shrinkage of semi-crystalline thermoplastics. However for amorphous thermoplastics, results showed an independency of obtained shrinkage to flow direction. Analysis of variance (ANOVA) results illustrated that cooling time was the most effective parameter on shrinkage for both PE and PC injected samples; followed by injection temperature as the second important parameter. The optimum conditions to minimize shrinkage of injection molded samples are also achieved using signal to noise ratio (S/N) analysis.
Parviz Parviz Mohamadian Samim, Arash Fattah-Alhosseini, Hassan Elmkhah, Omid Imantalab,
Volume 19, Issue 1 (March 2022)
Abstract
In this study, CrN/ZrN multilayer nanostructured coatings with different bilayers (10, 20, and 30) were created by the cathodic arc evaporation. The electrochemical behavior of samples was evaluated by polarization and impedance spectroscopy tests in the Ringer medium and the pin on disk test was used to investigate the tribological behavior of the samples. The results of measurements showed that the electrochemical and tribological behavior of the coatings depends on the number of bilayers and by rising the number of bilayers, the coating shows higher corrosion resistance and better tribological performance. Field emission scanning electron microscopy (FE-SEM) images of the specimens after exposure to the corrosion medium showed that the number of surface cavities were formed by the coating that had the highest number of bilayers comparing with other coatings were quite fewer in number and smaller in diameter. The results of the pin on disk test showed that by increasing the number of bilayers from 10 to 30, the coefficient of friction and wear rate decreased and the 30L coating showed better wear resistance.