Search published articles


Showing 53 results for Shah

Ebrahimi A.r., Yadegari M., Khosroshahi R.a.,
Volume 3, Issue 3 (Jul 2006)
Abstract

In this study, commercially pure titanium/304L stainless steel explosion bonded clads have been annealed under argon atmosphere over the temperature range of 700-900°C for 1h.Microstructure of the clads have been investigated before and after anealing. X-ray diffraction studies revealed that the annealing products in the form of intermetallic phases were gradually formed at the interface of the annealed clads. It was also found that, the bonding zone width increased with temperature according to an Arrhenius type equation. On the base of this equation, the activation energy of bonding zone growth was found equal to about 66.5 kJ/mol. The bond strength of the diffusion annealed clads were evaluated stress relieved. The maximum average tensile strength of ~350MPa was obtained for the as-welded clad. It was found that the bond strength decreased with annealing at 700°C due to an increase in the width of brittle intermetallic layer.
Babaei R., Shahinfar S., Homayonifar P., Dadashzadeh M., Davami P.,
Volume 3, Issue 3 (Jul 2006)
Abstract

In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In order to achieve an accurate model, solving domain was discrete to three regions includes: laminar sub layer, boundary layer and internal region. This model was applied to experimental models such as a driven cavity, Campbell benchmark [1] and top filled cavity. The results show that the suggested model yield favorable predictions of turbulence flow and have a good consistency in comparing with experimental results.
M. Ghalambaz,, M. Shahmiri, Y. H. K Kharazi,
Volume 4, Issue 1 (winter & spring 2007 2007)
Abstract

Abstract: Problems such as the difficulty of the selection of processing parameters and the large quantity of experimental work exist in the morphological evolutions of Semisolid Metal (SSM) processing. In order to deal with these existing problems, and to identify the effect of the processing parameters, (i.e. shearing rate-time-temperature) combinations on particle size and shape factor, based on experimental investigation, the Artificial Neural Network (ANN) was applied to predict particle size and shape factor SSM processed Aluminum A.356.0 alloy. The results clearly demonstrated that, the ANN with 2 hidden layers and topology (4, 2) can predict the shape factor and the particle size with high accuracy of 94%.The sensivity analysis also revealed that shear rate and solid fraction had the largest effect on shape factor and particle size, respectively. The shear rate had a reverse effect on particle size.
A. Zakeri,, M. Sh. Bafghi, Sh. Shahriari,
Volume 4, Issue 3 (Summer &Autumn 2007 2007)
Abstract

Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the stoichiometric amounts were needed for successful manganese dissolution. Under the optimum condition (ore particle size of −60+100 mesh, Fe2+/MnO2 molar ratio of 3.0, H2SO4/MnO2 molar ratio of 2.0) manganese could be extracted with over 95% efficiency by 20 minutes leaching at room temperature. A kinetic analysis based on dimensionless time method showed that shrinking core – ash diffusion control model fits the experimental results reasonably well. Value of activation energy was found to be 28.1 kJ/mole for the proposed mechanism.
M. Ghalambaz, M. Shahmiri,
Volume 5, Issue 3 (Summer 2008 2008)
Abstract

Abstract: Cooling slope-casting processing is a relatively new technique to produce semisolid cast feedstock for the thixoforming process. Simple equipment, ease of operation, and low processing costs are the main advantages of this process in comparison with existing processes such as mechanical stirring, electromagnetic stirring, etc. The processing parameters of cooling slope casting are length, angle and the material of the inclined plate and their combinations, which usually affect the micro structural evolutions of the primary solid phase. In order to clarify the effect of the processing parameters on the evolution of the particle size, based on experimental investigation, Artificial Neural Network (ANN) was applied to predict the primary silicon crystals (PSCs) size of semisolid cast ingot via a cooling slope casting process of Al-20%(wt.%) Si alloy. The results demonstrated that the ANN, with 2 hidden layers and topology (4, 3), could predict the primary particle size with a high accuracy of 94%. The sensitivity analysis also revealed that material of the cooling slope had the largest effect on particle size.
M. Shahmiri, S. Murphy,
Volume 5, Issue 4 (Autumn 2008 2008)
Abstract

Abstract: The microstructural features of the early stage of ordering of the intermetallic compound Pt2FeCu have been examined using optical and transmission electron microscopy in conjunction with X-ray diffraction technique. It was found that the compound has similar morphological alteration to that of FePt in which the ordering cannot be suppressed by rapid quenching. The early stage of ordering transformation was initiated at temperatures above the critical value of 1178 oC, by a homogeneous nucleation of the intermediate short range ordered particles and ultra rapid directional-induced heterogeneous growth (burst type). As the result of these combined mechanisms, twin –related ordered domains have been formed which in turn minimize the strains produced by ordering reaction in polycrystalline material. The individual grain was divided up by different sizes of twin-related ordered domain bonded with {101} habit planes.
H. Shahmir, M. Nili Ahmadabadi, F. Naghdi,
Volume 5, Issue 4 (Autumn 2008 2008)
Abstract

Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at.% Ni alloy were annealed at 673 K and 773 K for 30 and 60 min after 15% cold rolling. It was found that the transformation characteristics of these alloys are sensitive to annealing treatment and composition. The temperature range of transformation is broadened during cold working and after subsequent annealing, the intermediate phase was appeared. The peaks become sharper and close together on each cooling and heating cycle with increasing annealing temperature and time
B. Tolaminejad, A. Karimi Taheri, H. Arabi, M. Shahmiri,
Volume 6, Issue 4 (Autumn 2009 2009)
Abstract

Abstract: Equal channel angular extrusion (ECAE) is a promising technique for production of ultra fine-grain (UFG) materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to ECAE process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through ECAE die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of ECAE throughout the four consecutive passes and then it is slightly decreased when more ECAE passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. It was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a ECA-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the ECAE of the laminated composite compared to those of a single billet
M .shahmiri, , H. Arabi ,
Volume 6, Issue 4 (Autumn 2009 2009)
Abstract

  Abstract:

  The aims of this research were to investigate the effects of semisolid metal (SSM) processing parameters (i.e., shear rates –times – temperatures combinations) on the primary solidification products and isothermal holding duration, subsequent to cessation of stirring on the secondary solidification of Al-Si (A356) alloy.

  The dendrite fragmentation was found to be the governing mechanism of the primary dendritic to non-dendritic transformation, via rosette to final pseudo-spherical shapes during the primary solidification

The secondary solidification of the liquid in the slurry was not only a growth phenomenon but also promoted by 1) fresh heterogeneous nucleation and growth of dendrites and 2) the dendritic growth of the primary solidification products in the remaining liquid. Upon cessation of stirring and gradual disappearance of the prior shear force, the slurry relaxed, and the secondary solidification products pertained to conventional solidification condition
Bahman Mirzakhani, Hossein Arabi, Mohammad Taghi Salehi,seyed Hossein Seyedein, Mohammad Reza Aboutalebi, Shahin Khoddam, Jilt Sietsma,
Volume 6, Issue 4 (Autumn 2009 2009)
Abstract

  Abstract

  Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties.

  In this study, finite element method was utilized to simulate thermomechanical parameters during hot deformation processes. FEM results then were integrated with physically based state variable models of static recovery and recrystallization combined with a realistic microstructural geometry. The thermodynamic software Thermo-calc was also used to predict present microalloying elements at equilibrium conditions.

The model performance was validated using stress relaxation tests. Parametric studies were carried out to evaluate the effects of deformation process parameters on the microstructure development following hot deformation of the API-X70 steel
M. Banoee,z. Ehsanfar, N. Mokhtari,m. R. Khoshayand, A. Akhavan Sepahi, P. Jafari Fesharaki,h. R. Monsef-Esfahani,, A. R. Shahverdi,
Volume 7, Issue 1 (winter 2010 2010)
Abstract

Abstracts:

nanoparticles. All the extracts were used separately for the synthesis of gold nanoparticles through the reduction of

aqueous AuCl

gold ions to gold nanoparticles. The ethanol extract of black tea and its tannin free ethanol extract produced gold

nanoparticles in the size ranges of 2.5-27.5 nm and 1.25-17.5 nm with an average size of 10 nm and 3 nm, respectively.

The prepared colloid gold nanoparticles, using the ethanol extract of black tea, did not show the appropriate stability

during storage time (24 hours) at 4

showed no particle aggregation during short and long storage times at the same conditions. To the best of our

knowledge, this is the first report on the rapid synthesis of gold nanoparticles using ethanol extract of black tea and

its tannin free fraction.

In this research the ethanol extract of black tea and its tannin free fraction used for green synthesis of gold4¯. Transmission electron microscopy and visible absorption spectroscopy confirmed the reduction ofoC. In contrast, gold colloids, which were synthesized by a tannin free fraction

Khodamorad Abbaszadeh, Shahram Kheirandish, Hassan Saghafian,
Volume 7, Issue 3 (summer 2010 2010)
Abstract

The effects of lower bainite volume fraction on tensile and impact properties of D6AC ultrahigh strength steel were studied in the current work. To obtain mixed microstructures containing martensite and different volume fractions of the lower bainite, specimens were austenitized at 910° C, then quenched in a salt bath of 330°C for different holding times, finally quenched in oil. In order to obtain fully martensitic and bainitic microstructures, direct oil quenching and isothermal transformation heat treatment for 24 hours were used respectively. All specimens were double tempered at 200°C for 2 hours per tempered. Microstructures were examined by optical and scanning electron microscopes. Fracture morphologies were studied by scanning electron microscopy (SEM). Results showed that both yield and ultimate tensile strength generally decreased with an increase in volume fraction of lower bainite. However, a few exceptions were observed in the mixed microstructures containing 12% lower bainite, showing a higher strength than the fully martensitic microstructure. This can be explained on the basis of two factors. The first is an increase in the strength of martensite due to the partitioning of the prior austenite grains by lower bainite resulting in the refinement of martensite substructures. The second is a plastic constraint effect leading to an enhanced strength of lower bainite by the surrounding relatively rigid martensite. Charpy V-notch impact energy and ductility is improved with increasing the volume fraction of lower bainite.
S. Ahmadi,, H. R. Shahverdi*, S. S. Saremi,
Volume 7, Issue 4 (Autumn 2010 2010)
Abstract

Abstract: In this research work, crystallization kinetics of Fe55Cr18Mo7B16C4 alloy was evaluated by X-ray diffraction, TEM observations and differential scanning calorimetric tests. In practice, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates. Results showed that a two -step crystallization process occurred in the alloy in which - Fe phase was crystallized in the first step after annealing treatments. Activation energy for the first step of crystallization i.e. - Fe was measured to be 276 (kj/mol) according to Kissinger model. Further, avrami exponent calculated from DSC curves was 2 and a three -dimensional diffusion controlled mechanism with decreasing nucleation rate was observed in the alloy. It is also known from the TEM observations that crystalline á – Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology.


T. Rostamzadeh, H. R. Shahverd,
Volume 8, Issue 1 (winter 2011 2011)
Abstract

Abstract: In this study Al-5 (Vol) % SiCp nanocomposite powder has been successfully synthesized by high-energy planetary milling of Al and SiC powders for a period of 25 h at a ball-to-powder ratio of 15:1. The changes of the lattice strain, the crystallite size of the matrix phase, and the nanocomposite powder microstructure with time have been investigated by X-ray diffraction (XRD), X-ray mapping, and scanning electron microscopy (SEM) analyses. The morphologies of the nanocomposite powders obtained after 25 h of milling have also been studied by transmission electron microscopy (TEM). The results showed that nanocomposite powders were composed of near-spherical particles and, moreover, the SiC particles were uniformly distributed in the aluminum matrix.
Z. Shahri, S.r. Allahkaram,
Volume 9, Issue 4 (December 2012)
Abstract

Metal matrix composite coatings reinforced with nano-particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Cobalt/hexagonal boron nitride nano-composite coatings were prepared by means of the pulse current electroplating from a chloride electrolyte on copper substrates and a comparison was made with the pure cobalt in terms of structure and tribological properties. Effects of particles concentration (5-20 gL-1) and current density (50-200 mA cm-2) on the characterization of electroplated coatings were investigated via X-ray diffraction analysis, energy dispersive spectroscopy and Vickers micro-hardness. Moreover, the tribological behavior was studied using pin-on-disc method. The results showed that cobalt/hexagonal boron nitride nano-composite coatings have higher hardness, wear resistance and lower friction coefficient than pure cobalt and the plating parameters strongly affect the coating’s properties
A. Shahcheraghi, F. Dehghani, K. Raeissi, A. Saatchi, M. H. Enayati,
Volume 10, Issue 1 (march 2013)
Abstract

Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initial discharge capacity and exchange current density of hydrogen are increased by adding 5wt% TiO2, while the cycle stability and bulk hydrogen diffusivity don’t change. It is found that the charge transfer resistance of Mg2Ni–5wt% TiO2 composite is lower than that of Mg2Ni alloy. On the other hand, the hydrogen oxidation during the discharge process proceeds more easily on the electrode surface containing TiO2 additive.
Sh. Shahriari, M. Ehteshamzadeh,
Volume 10, Issue 1 (march 2013)
Abstract

Abstract: Plasma electrolytic oxidation (PEO) technique was used to prepare ceramic coatings on the casted aluminum alloys containing ~5 and ~9.5 wt.% Mg. The applied voltage was controlled at 450V and 550V for evaluating the effect of this main parameter, as well as, magnesium content of the substrate on the microstructure and electrochemical corrosion behavior after PEO treating. The results of X-ray diffraction confirmed formation of galumina and MgSiO3. It was found that higher applied voltage caused fewer and minor discharge channels which led to higher corrosion resistance. Also, increasing of magnesium content of the substrate caused decreasing of polarization resistance, which could be associated to the formation of MgSiO3.
S. Ahmadi, H. R. Shahverdi,
Volume 10, Issue 4 (december 2013)
Abstract

Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated using X-ray diffraction, differential scanning calorimetric (DSC) tests and TEM observations in this research work. In effect, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates (10, 20, 30, 40 K/min) and kinetic models (i.e. Kissinger- Starink, Ozawa, and Matusita methods). Results showed that a two -step crystallization process occurred in the alloy in which α - Fe and Fe3B phases were crystallized respectively in the structure after heat treatment. Activation energy for the first step of crystallization i.e., α - Fe was measured to be 421 (kj/mol) and 442 (kj/mol) according to both Kissinger- Starink and Ozawa models respectively. Further, Avrami exponent calculated from DSC curves was 1.6 and a two -dimensional diffusion controlled mechanism with decreasing nucleation rate was observed in the alloy. TEM observations reveal that crystalline α – Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology
Z. Shahri, S. R. Allahkaram,
Volume 10, Issue 4 (december 2013)
Abstract

Metal matrix nano composite coatings possess enhanced properties such as corrosion and wear resistance. This paper aims to study the corrosion behavior of pure Co and Co-BN nano composite coatings deposited with different particles concentration (5-20 g L-1) on copper substrates using electroplating technique. Morphology and elemental compositions of the coatings were investigated by means of scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). The corrosion behavior was analyzed in a 3.5 wt% NaCl via polarization and impedance techniques. The results obtained in this study indicate that the co-deposition of BN nano particles improved corrosion resistance of electrodeposited cobalt coatings.
M. H. Goodarzy, H. Arabi, M. A. Boutorabi, S. H. Seyedein, H. Shahrokhi,
Volume 11, Issue 1 (march 2014)
Abstract

Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP) at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 22 and C 44 . The effect of dislocations contrast factor on the anisotropic strain broadening of diffraction profiles was considered for measuring the microstructural features on the base of the modified Williamson-Hall and Warren-Averbach methods. Results showed that the dislocations density of the solution annealed sample increased from 4.28×10 12m-2 to 2.41×10 14m-2 after one pass of cold ECAP and the fraction of edge dislocations in the solution annealed sample increased from 43% to 74% after deformation. This means that deformation changed the overall dislocations characteristic more to edge dislocations. Also the crystalline cell size of the solution annealed sample decreased from 0.83μm to about 210nm after one pass of ECAP process at room temperature

Page 1 from 3    
First
Previous
1
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb