Showing 74 results for Sol
Mr. Hossein Minouei, Dr. Mohammadhossein Fathi, Dr. Mahmood Meratian, Mr. Hossein Ghazvinizadeh,
Volume 9, Issue 3 (9-2012)
Abstract
ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in order to solutionize and homogenize the microstructure and promote surface bioactivation. For bioactivity evaluation, heat treated specimens were immersed in Simulated Body Fluid (SBF). Surface of specimens before and after the immersion was analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and X-Ray Diffraction (XRD). Results showed an appropriate microstructure with bioactive layer on the surface of specimens after heat treatment. In vitro result and formation of bone-like apatite layer on specimens indicated that heat treated samples were potentially suitable for bone replacement and tissue regeneration under highly loaded conditions.
Dr Mohammad Reza Sarmasti Emami,
Volume 9, Issue 3 (9-2012)
Abstract
This paper presents an experimental and theoretical investigation of the causes of corrosion of stack in a cement plant. In this paper, information related to metallic stack failures are given in the form of a case study in Neka Cement Plant, Mazandaran, Iran. Heavy corrosion attacks were observed on the samples of stack. The failure can be caused by one or more modes such as overheating, stress corrosion cracking (SCC), hydrogen embrittlement, creep, flame impingement, sulfide attack, weld attack, dew point corrosion, etc. Theoretical calculations and experimental observations revealed that, the corrosion had taken place due to the condensation of acidic flue gases in the interior of stack. Also, the chemical analysis of the corrosion deposits and condensates confirmed the presence of highly acidic environment consisting of mostly sulfate ions.
Simin Janitabar-Darzi, Alireza Mahjoub,
Volume 9, Issue 3 (9-2012)
Abstract
Yellow-colored nitrogen doped TiO2 photocatalyst and a pure TiO2 powder were synthesized via sol-gel method using TiCl4 and urea as raw materials. However, the synthesis procedure for nitrogen doped TiO2 was catalyzed by acid that dialed with controlled precipitation and slow nucleation. According to XRD analysis, the nitrogen doped TiO2 consisted of anatase phase of titania which was a significant achievement regarding its possible photocatalytic applications. The band gaps of nitrogen doped TiO2 and pure TiO2 were estimated from UV-Vis spectroscopy data to be 2.8 and 3.3 ev, respectively. Photocatalytic properties of the nitrogen doped TiO2 nanocatalyst and pure TiO2 were compared for degradation of crystal violet dye in visible light irradiation. In comparison to pure TiO2, nitrogen doped TiO2 showed superior photocatalytic efficiency towards the dye.
V. Tajer-Kajinebaf, H. Sarpoolaky, T. Mohammadi,
Volume 10, Issue 1 (3-2013)
Abstract
Abstract:Nanostructured titania was synthesized by colloidal and polymeric sol-gel routes. Stable colloidal and polymeric titania sols were prepared by adjusting the proper values of the acid/alkoxide and the water/alkoxide molar ratios. The properties of sols were determined by dynamic light scattering technique and synthesized titania was characterized by thermogravimetry and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, optical microscopy and field emission scanning electron microscopy. The results showed particle size distribution of colloidal sol 10-50 nm compared to polymeric one which was 0.5-2 nm. Phase analysis of the colloidal sample revealed anatase as the major phase up to 550 °C, while the polymeric route resulted only anatase phase up to 750 °C. On the basis of results, titania prepared by the polymeric route showed better thermal stability against phase transformation than the sample prepared by the colloidal route. Also, microstructural studies showed that titania nanopowder can be produced by both sol-gel routes
M. Alzamani, A. Shokuhfar, E. Eghdam, S. Mastal,
Volume 10, Issue 1 (3-2013)
Abstract
Abstract:In the present research, SiO2–TiO2 nanostructure films were successfully prepared on windshields using the sol–gel technique for photocatalytic applications. To prevent the thermal diffusion of the sodium ions from the glass to TiO2 films, the SiO2 layer was pre-coated on the glass by the sol–gel method. The substrates were dipped in the sol and withdrawn with the speed of 6cm/min-1 to make a gel coating film. The coated films were dried for 2 days at 27 °C to allow slow solvent evaporation and condensation reactions due to rapid sol–gel reaction of Titania precursor. Then, the films were annealed at 100 °C for 30min and at the final temperature (500, 700 °C) for 30 min continuously. The structure and surface morphology properties, which are as a function of annealing temperature, have been studied by SEM FE-SEM and XRD. The FE-SEM surface morphology results indicate that the particle size increases from 19 to 42 nm by increasing the annealing temperature from 500 °C to 700 °C. Likewise, XRD illustrate the crystal anatase and rutile as main phases for TiO2-SiO2 films annealed at 500 °C and 700 °C respectively. This procedure resulted in transparent, crack-free SiO2–TiO2 films.
F. Gulshan, Q. Ahsan,
Volume 10, Issue 2 (6-2013)
Abstract
The probable reasons for evolution of weld porosity and solidification cracking and the structure- property relationship in aluminium welds were investigated. Aluminium plates (1xxx series) were welded by Tungsten Inert Gas (TIG) welding process, 5356 filler metal was used and heat input was controlled by varying welding current (145A, 175A and 195A). The welded samples were examined under optical and scanning electron microscopes and mechanical tests were performed to determine tensile and impact strengths. Secondary phase, identified as globules of Mg2Al3 precipitates, was found to be formed. Solidification cracking appeared in the heat affected zone (HAZ) and porosities were found at the weld portion. The tendency for the formation of solidification cracking and weld porosities decreased with increased welding current.
J. Jac Faripour Maybody, A. Nemati, E. Salahi,
Volume 10, Issue 2 (6-2013)
Abstract
In the present study, bioceramic composites based hydroxyapatite (HAp) reinforced with carbon nanotubes (CNTs) was synthesized via sol-gel technique. The dried gels were individually heated at a rate of 5°C/min up to 600°C for 2 h in a muffle furnace in order to obtain HAp-MWCNTs mixed powder. Composites were characterized by XRD, FT-IR, SEM, TEM/SAED/EDX and Raman spectroscopy techniques. Results showed the synthesis of HAp particles in the MWCNTs sol which was prepared in advance, leads to an excellent dispersion of MWCNTs in HAp matrix. Apparent average size of crystallites increased by increasing the percentage of MWCNTs. The average crystallite size of samples (at 600°C), estimated by Scherrer’s equation was found to be ~50-60 nm and was confirmed by TEM. MWCNTs kept their cylindrical graphitic structure in composites and pinned and fastened HAp by the formation of hooks and bridges.
H. Mohammadi, M. Ketabchi,
Volume 10, Issue 3 (9-2013)
Abstract
The microstructure and mechanical properties of 7075 wrought aluminum alloy produced by strain induced melt activation (SIMA) route were investigated.Also liquid volume fraction measurement was studied by three procedures. Remelting process was carried out in the range of 560 to 610 °C for 20 min holding. The microstructure in the semi-solid state consists of fine spherical solid grains surrounded byliquid.The mechanical properties of the alloy vary with the grain size and weak mechanical properties of globular samples would appear if an alloy reheated at a high temperature. Thermodynamic simulation is a fast and efficient tool for the selection of alloys suitable for semi-solid processing
A. Najafi, F. Golestani-Fard, H. R. Rezaie,
Volume 11, Issue 1 (3-2014)
Abstract
Mono dispersed nano SiC particles with spherical morphology were synthesized in this project by hydrolysis and condensation mechanism during sol gel processing. pH, temperature and precursor’s ratio considered as the main parameters which could influence particles size. According to DLS test results, the smallest size of particles in the sol (<5nm) was obtained at pH<4. It can be observed from rheology test results optimum temperature for achieving nanometeric gel is about 60 ˚C. The optimum pH values for sol stabilization was (2-5) determined by zeta potentiometery. Si 29NMR analysis was used in order to get more details on final structure of gel powders resulted from initial sol. X-ray diffraction studies showed sythesized powder consists of β-SiC phase. Scanning electron microscopy indicated agglomerates size in β-SiC synthesis is less than 100 nm. Finally, TEM studies revealed morphology of β-SiC particles treated in 1500˚C and after 1hr aging is spherical with (20-30) nm size
S. Ahmadi, H.r. Shahverdi, H. Arabi,
Volume 11, Issue 3 (9-2014)
Abstract
This study is focused on the effects of electroslag remelting by prefused slag (CaO, Al2O3, and CaF2) on macrostructure and reduction of inclusions in the medical grad of 316LC (316LVM) stainless steel. Results showed that in order to obtain uniform ingot structures during electroslag remelting, the shape and depth of the molten pool should be carefully controlled. High melting rates lead to deeper pool depths and interior radial solidification characteristics. Furthermore, decrease in the melting rate caused more reduction of non-metallic inclusions. In practice, large shrinkage cavities formed during the conventional casting process in the primary ingots were the cause of the fluctuation in the melting rate, pool depth and extension of equiaxal crystals zone
A. Mohammadzadeh, A. Sabahi Namini, M. Azadbeh,
Volume 11, Issue 3 (9-2014)
Abstract
The rapidly solidified prealloyed alpha brass powder with a size range of 40 to 100 μm produced by water
atomization process was consolidated using liquid phase sintering process. The relationships between sintering
temperature, physic-mechanical properties and microstructural characteristics were investigated. Maximum
densification was obtained at 930 °C, under 600 MPa compacting pressure, with 60 min holding time. The
microstructure of the sintered brass was influenced by dezincification and structural coarsening during supersolidus
liquid phase sintering. As a consequence of Kirkendall effect atomic motion between Cu and Zn atoms caused to
dezincification at the grain boundaries and formation of ZnO particles on the pore surfaces. It was concluded that
microstructural analysis is in a well agreement with obtained physical and mechanical properties. Also, the amount of
liquid phase, which depends on sintering temperature, results in different load bearing cross section areas, and it
affects the type of fracture morphologies.
N Parvin, R Derakhshandeh Haghighi, M Naeimi, R Parastar Namin, M. M. Hadavi,
Volume 11, Issue 4 (12-2014)
Abstract
In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was carried out at 1100 ̊C under a reducing atmosphere for 1h. The effect of additives on infiltration of Ag and density were evaluated by SEM and Archimedes methods. Properties of the specimens were compared following two distinct processes namely: I) sintering simultaneously with infiltration process and II) sintering prior to infiltration (pre-sintering process). It was found that specimens which were pre-sintered and then infiltrated with molten silver represent higher hardness and finer microstructure than the specimens infiltrated simultaneously with sintering.
A. Ahmadi, A. A. Youzbashi, A. Nozad, A. Maghsoudipour, T Ebadzadeh,
Volume 11, Issue 4 (12-2014)
Abstract
Synthesis of YSZ nanopowder by alkoxide sol-gel method, through two different hydrolysis routes, one under careful control by using acetyacetone as ligand, and the other through basic hydrolysis, was investigated. The synthesized powders were characterized by various analytical techniques such as, XRD, STA, PSA, BET, SEM, and TEM. The results showed that, the YSZ powders prepared through the basic hydrolysis route consist of weakly agglomerated nanosized spherical particles whereas the products obtained through the controlled hydrolysis route, consist of hard irregular shaped agglomerates. Sinterability of these powders was examined at 1480 °C, which showed that the powder synthesized through the basic hydrolysis route attains a density of 94%, against 60% for the other case. It was therefore concluded that, alkoxide sol-gel method through basic hydrolysis route, can be more suitable for the synthesis of YSZ nanopowder and its subsequent sintering.
Z. Ghiami, S. M. Mirkazemi, S. Alamolhoda,
Volume 12, Issue 2 (6-2015)
Abstract
trontium hexaferrite (SrFe
12
O
19
) nanosized powders were synthesized by sol-gel auto-combustion method
with and without cetyltrimethylammonium boromide (CTAB) addition in the sol with Fe/Sr ratio of 11 (using additional
Sr). The resultant powders were investigated by X-ray Diffraction (XRD), Transmission Electron Microscope (TEM),
Field Emission Scanning Electron Microscope (FESEM) and Vibration Sample Magnetometer (VSM) techniques.
Phase constituents of the synthesized samples which were heat treated at temperatures in the range of 700- 900 ◦C
were studied. XRD results revealed that CTAB addition facilitates the formation of single phase strontium hexaferrite
at 800 ◦C. Microstructural evaluations with FESEM represented that CTAB addition causes formation of larger
particles with a narrower size distribution. VSM results represented that the highest amount of intrinsic coercivity force
(
i
H
C
) was obtained in the sample without CTAB addition and with additional Sr, calcined at 800 ◦C for 1 h which was
equal to 5749.21 Oe, while the value of
i
H
C
was equal to 4950.89 Oe without additional Sr. The amount of maximum
magnetization (M
max
) was raised from 48.41 emu/g to 62.60 emu/g using CTAB and additional Sr. The microstructure
and magnetic properties of the samples have been explained
M. Maleki, S. M. Rozati,
Volume 12, Issue 4 (12-2015)
Abstract
In this paper, polycrystalline pure zinc oxide nano structured thin films were deposited on two kinds of single crystal and polycrystalline of p and n type Si in three different substrate temperatures of 300, 400 and 500◦C by low cost APCVD method. Structural, electrical and optical properties of these thin films were characterized by X ray diffraction, two point probe method and UV visible spectrophotometer respectively. IV measurements of these heterojunctions showed that turn on voltage and series resistance will increase with increasing substrate temperature in polycrystalline Si, while in single crystal Si, turn on voltage will decrease. Although they are acceptable diodes, their efficiency as a heterojunction solar cell are so low
M. Khosravi Saghezchi, R. Ajami, M. Biazar Markie, H. Sarpoolaky,
Volume 12, Issue 4 (12-2015)
Abstract
A comparing study on formation and microstructure features of aluminum titanate is investigated through both solid-state and sol-gel processes. Aluminum titanate formed by firing at 1350ºC and 1450ºC for 4h in solid-state process. In the sol-gel process formation of submicron sized particles is followed by addition of sucrose into the transparent sol. XRD analysis was confirmed the formation of aluminum titanate at 1400ºC in lower duration of calcination (3h) without any additives in the sol-gel process. In this work 2wt% MgO is added to the samples as the additive for forming acceleration of aluminum titanate. The influence of MgO addition and heat treatment are studied on phase formation and microstructure development of aluminum titanate in both procedures. Additive optimizes aluminum titanate formation at lower temperatures (1300-1350ºC). Phase and microstructure studies of Mg containing samples optimally show significance in aluminum titanate formation.
S. Alamolhoda, S. M. Mirkazemi, T. Shahjooyi, N. Benvidi,
Volume 13, Issue 1 (3-2016)
Abstract
Nano-sized NiFe2O4 powders were synthesized by sol–gel auto-combustion method using pH values from 7 to 9 in the sol. The effect of pH variations on complexing behavior of the species in the sol has been explained. Changes in phase constituents, microstructure and magnetic properties by changes in pH values were evaluated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. Changes in pH value from 7 to 9 changes the amounts of NiFe2O4, FeNi3 and α-Fe2O3 phases. Calculated mean crystallite sizes are in the range of 44 to 51nm. FESEM micrographs revealed that increasing the pH value to 9 causes formation of coarse particles with higher crystallinity. Saturation magnetization was increased from 36.96emu/g to 39.35emu/g by increasing pH value from 7 to 8 which is the result of increased FeNi3 content. Using higher pH values in the sol reduces the Ms value.
S. Yazdani, S. Javadpour, Sh. Mehdizadeh Naderi, M. Javidi,
Volume 13, Issue 2 (6-2016)
Abstract
The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion resistance system. Historically these corrosion resistance coatings were based on the use of chemicals containing Cr (VI) compounds. Silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In this study, hydrophobic coating sol was prepared with methyltriethoxysilane (MTES), methanol (MeOH), and water (as 7M NH4OH) at a molar ratio of 1:25:4.31 respectively. The coatings were applied by a dip-technique to 2024-T3 Al alloy, and subsequently cured at room temperature and there after heat treated in an oven at 150°C. The anticorrosion properties of the coatings within 3.5 wt% NaCl solution were studied by Tafel polarization technique. The sol–gel coating exhibited good anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The surface properties were characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was studied by Fourier transform infrared spectroscopy (FTIR).
M. Shahmiri,
Volume 13, Issue 4 (12-2016)
Abstract
Over the last few decades, there have been many mechanisms proposed to describe the formation of the non-dendritic microstructures during Semisolid Metal (SSM) processing; including dendrite fragmentation, spherical growth, cellular growth and recalescence. Dendrite fragmentation is the most popular mechanism of all these hypotheses. It is the purpose of the present article to examine the morphological evolution of the non-dendritic microstructures, based on models proposed by Flemings, Vogel, Cantor, and Doherty during SSM processing of the Al-Si (A356) alloy. Based on new microstructural evidences, including (1) - plastic deformation at the side arms by slip lines formation as a result of the thermal fatigue mechanism, (2) - crack formation at the root of the side arms and (3) – the interaction of a rapidly sheared hot viscous medium with these regions, i.e. erosion; it propose and hereby discuss a new mechanism called "fatigue –erosion", for dendrites fragmentation of the experimental alloy. Optical and Scanning Electron Microscopy (SEM) with EBSD and EDS, TEM, and AFM was used for the microstructural characterizations.
Z. Valefi, M. Saremi,
Volume 14, Issue 2 (6-2017)
Abstract
In this paper the effect of plasma spray parameters, atomizing gas and substrate preheat temperature on microstructure and phase composition of YSZ coatings produced by SPPS process have been investigated. The experimental results showed that increasing the power of plasma, using hydrogen as the precursor atomizing gas and increasing substrate preheat temperature decrease the amount of non-pyrolyzed precursor in the coatings. At low plasma power most of the deposited precursor is in non-pyrolyzed state, and consequently the applied coatings are defective. The increase in substrate temperature beyond 800oC either by preheating or heat transfer from plasma torch to the substrate, prevent the coating formation. In SPPS coating formation, up to a special spray distance the optical microscopy image of the coatings showed a snowy like appearance. XRD analysis showed that in this situation the amount of un-pyrolyzed precursor is low. Beyond this spray distance, spherical particles, are obtained and XRD analysis showed that most of the precursor is in un-pyrolyzed state.