Search published articles


Showing 151 results for Sit

A. Ehsani, S Bodaghi, H Mohammad Shiri, H Mostaanzadeh, M Hadi,
Volume 13, Issue 3 (9-2016)
Abstract

In this study, an  organic compound  inhibitor, namely N-benzyl-N-(4-chlorophenyl)-1H-tetrazole-5-amine (NBTA), was synthesized and the role of this inhibitor for corrosion protection of stainless steel (SS) exposed to 0.5 M H2SO4 was investigated using electrochemical, and quantum analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of NBTA was found to be mainly mixed type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, quantum chemical calculations of the inhibitor were performed. The adsorption of NBTA onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of of -7.88 kJ mol-1. Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of NBTA.


N. Radhika, R. Raghu,
Volume 13, Issue 4 (12-2016)
Abstract

Functionally graded aluminium/zirconia metal matrix composite was fabricated using stir casting technique followed by horizontal centrifugal casting process and a hollow cylindrical functionally graded composite (150 x 150 x 16 mm) was obtained with centrifuging speed of 1200 rpm. The microstructural evaluation and hardness test was carried out on the outer and inner surface of the functionally graded composite at a distance of 1 and 13 mm from the outer periphery. In Response Surface Methodology, Central Composite Design was applied for designing the experiments and sliding wear test was conducted as per the design using a pin-on-disc tribometer for varying ranges of load, velocity and sliding distance. The model was constructed and its adequacy was checked with confirmation experiments and Analysis of Variance. The microstructural examination and hardness test revealed that the outer surface of FGM had higher hardness due to the presence of  particle rich region and the inner surface had lesser hardness since it was a particle depleted region. The wear results showed that wear rate increased upon increase of load and decreased with increase in both velocity and sliding distance. Scanning Electron Microscopy analysis was done on the worn specimens to observe the wear mechanism. It was noted that wear transitioned from mild to severe on increase of load and the outer surface of FGM was found to have greater wear resistance at all conditions.


S. Ghasemi-Kahrizsangi, H. Gheisari-Dehsheikh, M. Boroujerdnia,
Volume 13, Issue 4 (12-2016)
Abstract

In this study the effect of nano meter size ZrO2 particles on the microstructure, densification and hydration resistance of magnesite –dolomite refractories was investigated. 0, 2, 4, 6 and 8 wt. % ZrO2 particles that were added to magnesite –dolomite refractories containing 35 wt. % CaO. The Hydration resistance was measured by change in the weight of specimens after 72 h at 25℃ and 95% relative humidity. The results showed with addition of nano meter size ZrO2 particles, the lattice constant of CaO increased, and the bulk density and hydration resistance of the specimens increased while apparent porosity decreased. With the addition of small amount ZrO2 the formation of CaZrO3 phase facilitated the sintering and the densification process. The mechanism of the nano meter size ZrO2 particles promoting densification and hydration resistance is decreasing the amount of free CaO in the specimens.


F. Sakhaei, E. Salahi, M. Eolya, I. Mobasherpour,
Volume 13, Issue 4 (12-2016)
Abstract

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO) has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.


N. Maskani, R. Naghizadeh, A. Mirhabibi, H. Rezaie,
Volume 14, Issue 1 (3-2017)
Abstract

The synthesis of micro-sized, uniformly distributed Al2O3-15Vol% Ni powders were studied through three step co-precipitation of hydroxides mixtures from proper solution, calcination at air atmosphere and final step of calcined powders in a carbon bed. Al and Ni hydroxide and amorphous phase were first obtained from their salt’s solutions through chemical co-precipitation method by adjusting pH. The precipitated powders were then calcined to obtain a mixture of their oxides as NiO and NiAl2O4 which were reduced in a carbon bed at various temperatures up to 1300. Proper temperature for calcination in air was determined through TG analysis; 900. SEM observation of powders after reduction, revealed micro-sized Ni particles, along with fin distribution of Ni and Al2O3 elements. XRD analysis of the calcined sample showed the presence of NiAl2O4 and NiO and the same analysis for the reduced sample confirmed the formation of Al2O3 and Ni.    


S. Borji, K. Zangeneh-Madar, M. Ahangarkani, Z. Valefi,
Volume 14, Issue 1 (3-2017)
Abstract

In this paper the feasibility of fabricating controlled porous skeleton of pure tungsten at low temperature by addition of submicron particles to tungsten powder (surface activated sintering) has been studied and the best parameters for subsequent infiltration of Cu were acquired. The effects of addition of submicron particles and sintering temperature on porous as well as infiltrated samples were studied. The samples were examined by scanning electron microscopy (SEM), Vickers hardness measurements and tensile test. The composites made have been investigated and revealed the making W-Cu composite with good density, penetrability, hardness and microstructure. Consequently, the sintering temperature was reduced considerably (Ts≤1650oC) and a homogeneous porous tungsten was obtained. Also, composite prepared by this method exhibited elongation about 28% that is much more than conventional W-15%wt Cu composites. This method of production for W–Cu composites has not been reported elsewhere


B.m. Viswanatha, M. Prasanna Kumar, S. Basavarajappa, T.s. Kiran,
Volume 14, Issue 2 (6-2017)
Abstract

The effects of applied load, sliding speed and sliding distance on the dry sliding wear behavior of aged Al-SiCp-Gr composites were investigated. The specimen were fabricated by stir-casting technique. The pin-on-disc wear testing machine was used to investigate the wear rate by design of experiments based on L27 using Taguchi technique. Sliding distance was the most important variable that influenced the wear rate followed by sliding speed and applied load. The worn out surfaces were analyzed by SEM and EDS to study the subsurface mechanism of wear. The addition of reinforcements showed improved tribological behavior of the composite than base alloy.


Z. Ghaferi, S. Sharafi, M.e. Bahrololoom,
Volume 14, Issue 2 (6-2017)
Abstract

In this research, nanocrystalline Co-Fe coatings were electrodeposited on copper substrate. The influence of current density on different properties of the films at two pH levels was investigated. All the coatings showed nodular structure with rougher morphology at higher current densities. Due to anomalous deposition at higher current density, the amount of iron content increased and reached its maximum value at about 50 wt.% for the coating obtained from pH 5. X-ray diffraction patterns showed hcp structure as the dominant phase. However, by increasing current density at lower pH value, a double phase structure containing fcc+hcp phases was detected. It was observed that current density has a positive effect on grain refinement. However, coarser grains would obtain at lower pH value. Microhardness measurements showed that, there is a direct relationship between grain size and microhardness. Moreover, microstructure in double phase structure films can influence microhardness more dominantly. Vibrating sample magnetometer (VSM) measurements indicated that the saturation magnetic is proportion to deposited iron content and reached its maximum value at about 1512 emu/cm3. It was cleared that grain size, phase structure and chemical composition can affect coercivity of the films effectively.


R. Hasanzadeh, T. Azdast, R. Eungkee Lee, A. Afsari Ghazi,
Volume 14, Issue 3 (9-2017)
Abstract

Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting the best material that has the highest degree of satisfaction is necessary. In the present study, six polymeric nanocomposite materials were injection molded and considered as material alternatives. Criteria weighting was carried out through analytical hierarchy process (AHP) and Entropy methods. Selecting the most appropriate material was applied using technique for order preference by similarity to ideal solution (TOPSIS) and the multi-objective optimization on the basis of ratio analysis (MOORA) methods respect to the considered criteria. Criteria weighting results illustrated that impact and tensile strengths are the most important criteria using AHP and Entropy methods, respectively. Results of ranking alternatives indicated that polycarbonate containing 0.5 wt% nano Al2O3 is the most appropriate material for automotive bumper beam due to its high impact and tensile strengths in addition to its low cost of raw material. Also, the sensitivity analysis was performed to verify the selection criteria and the results as well.


N. Aboudzadeh, Ch. Dehghanian, M.a. Shokrgozar,
Volume 14, Issue 4 (12-2017)
Abstract

Recently, magnesium and its alloys have attracted great attention for use as biomaterial due to their good mechanical properties and biodegradability in the bio environment. In the present work, nanocomposites of Mg - 5Zn - 0.3Ca/ nHA were prepared using a powder metallurgy method. The powder of Mg, Zn and Ca were firstly blended, then four different mixtures of powders were prepared by adding nHA in different percentages of 0, 1, 2.5 and 5 %wt. Each mixture of powder separately was fast milled, pressed, and sintered. Then, the microstructure and mechanical properties of the fabricated nanocomposites were investigated. The XRD profile for nanocomposites showed that the intermetallic phases of MgZn2, MgZn5.31 and Mg2Ca were created after sintering and the SEM micrographs showed that the grain size of nanocomposite reduced by adding the nHA. The nano composite with 1wt. % nHA increased the density of Mg alloy from 1.73 g/cm3 to 1. 75 g/cm3 by filling the pores at the grain boundaries. The compressive strength of Mg alloy increased from 295MPa to 322, 329 and 318MPa by addition of 1, 2.5 and 5wt. % nHA, respectively.

M. Arockia Jaswin, D.m. Mohan Lal,
Volume 15, Issue 1 (3-2018)
Abstract

The behaviour of the cryogenically treated En52 martensitic valve steel has been experimentally analyzed in this paper. Material samples are subjected to deep cryogenic treatment after completing the regular heat treatment. The critical properties of the valve steel like wear resistance, hardness, tensile strength and impact strength are evaluated for the cryo treated En52 valve steel samples as per the ASTM standards. The microstructural changes and the mechanism behind the enhancement of the properties are examined and reported. The precipitation of fine carbides, transformation of retained austenite and refinement of carbides were the reasons behind the improvement of the mechanical properties. Deep cryogenic treatment process parameters are optimized for better wear resistance, hardness and tensile strength using grey Taguchi technique. Deep cryogenic treatment process greatly influences the wear resistance, a maximum enhancement of 54% is observed

S. Akbarzadeh, S.r. Allahkaram, S. Mahdavi,
Volume 15, Issue 2 (6-2018)
Abstract

Tin-Zinc alloy coatings have many applications because of their unique properties such as corrosion resistance, solderability and flexibility. In this study, the effect of current density, temperature and pH on chemical composition, cathodic current efficiency, morphology and structures of the coatings was investigated. The results illustrated that, at low current densities (<0.5 mA/cm2), the coatings were relatively pure tin, but Zn content increased with enhancing the current density. At higher currents a relatively pure Zn film was obtained. Temperature and pH also affected chemical composition of the alloy films. Zn content of the coatings was decreased by increasing the temperature, while its variation with pH had ascending-descending trend. Morphological investigation of the coatings revealed that increasing Zn content of deposits led to porous, rough and fine grained films.


A. Rashad,
Volume 15, Issue 2 (6-2018)
Abstract

In the current work, the properties of cement pastes doped with high amounts of ground granulated blast-furnace slag (HVS) were investigated. Portland cement (PC) was substituted with ground granulated blast-furnace slag (donated as slag) at very high amounts of 85%, 90%, 95% and 100%, by weight. PC paste without any content of slag was used as a reference. Some fresh and hardened properties such as workability, density, compressive strength up to 56 days, pH value and drying shrinkage up to 200 days were measured. The various phases formed were identified using X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The microstructure of the formed hydration products was determined by scanning electron microscopy (SEM). The results indicated that HVS has higher workability and higher drying shrinkage beyond 60 days. On the other hand, HVS has lower pH, density and compressive strength.

F. Farzan, H. R. Shahverdi, F. Malek Ghaeni,
Volume 15, Issue 2 (6-2018)
Abstract

Recently, wear resistant properties of metallic glasses has attracted a lot of interest. Because the surface of metallic glasses are prone to phase transformation, finding the effects of test condition on structure and wear behavior of metallic glasses is important. In this research, by using an automated electrospark deposition (ESD), a layer of Fe51Cr18Mo7B16C4Nb4 was deposited on AISI 316l stainless steel. Metallographic, scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS) analyses of the coating were conducted for measuring the thickness and analyzing composition of the coating. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) investigations showed that the structure of the coating was amorphous. Ball on disc wear tests were conducted in dry and wet conditions and Ringer’s solution was chosen as the wetting agent. The wear test results showed that the coefficient of friction in dry condition was lower than the wet condition and wear modes were fatigue and corrosive wear in dry and wet conditions respectively. SEM and EDS analyses showed different features and elemental inhomogeneity on the surface of the dry wear track, which were not detectable in wet wear track. In addition, activation of diffusion process and formation of carbides and borides were observed on the wear track in dry condition.

A. Ait Yala, N. Demouche, S. Beddek, K. Hamid,
Volume 15, Issue 4 (12-2018)
Abstract

Repairing a crack in a structure consists in reducing crack’s tips stresses by transferring loads trough a bridge made of the composite patch and the adhesive. This operation is impacted by four factors: shear modulus of the adhesive, the composite patch’s Young module and the thicknesses of these two materials. The design of experiments method allowed us to determine, the weight of each of the four factors and their interactions as well their best combination to obtain an efficient and lasting repair. The constraints relative to the stiffness ratio and the shear strain were taken into consideration in order to determine the best configuration that allowed the minimization of K.

M. Imran, R. Khan, S. Badshah,
Volume 16, Issue 1 (3-2019)
Abstract

Composite structures are widely used in many applications ranging from, but not limited to, aerospace industry, automotive, and marine structures due to their attractive mechanical properties like high strength to weight ratios. However composite structures needs utmost care during structures manufacturing and working conditions should be assessed prior to installation. One of the important defect in composite structures is delamination. Present work is focused on investigation of delamination effects on the natural frequencies of composite plate using commercial finite element software, ABAQUS. Analytical results were also analyzed using MATLAB code. Different stacking sequences and boundary conditions are considered for study in both analytical formulation and finite element analysis. Finite element results are compared with analytical results to validate the perfect composite plate. The natural frequency of the composite plate reduced with an increase in delamination size. Additionally, all-sides clamped composite plate showed higher values of natural frequency than other constraints in lower modes for symmetrical laminates. Natural frequency in cross ply laminates are higher for the simply supported composite plates. On comparison, results from both the techniques, finite element analysis and analytical analysis, were in good agreement.

M. Senthil Kumar , R. V. Managalaraja, K. Senthil Kumar, L. Natrayan,
Volume 16, Issue 2 (6-2019)
Abstract

The present requirement of automobile industry is seeking lightweight material that satisfices the technical and technological requirements with better mechanical and tribological characteristics.  Aluminium matrix composite ( AMC ) materials meet the requirements of the modern demands. AMCs are used in automotive applications as engine cylinders, pistons, disc and drum brakes. This paper investigates the effect of particle size and wt% of Al2O3/SiC reinforcement on mechanical and tribological properties of hybrid metal matrix composites (HMMCs). AA2024 aluminium alloy is reinforced with Al2O3/SiC different particle sizes (10, 20 and 40 µm) and weight fractions (upto 10 wt %) were fabricated by using squeeze casting technique. HMMCs were characterized for its properties such asX-ray diffraction (XRD), density, scanning electron microscope ( SEM ), hardness, tensile strength, wear and coefficient of friction. AA2024/5wt%Al2O3/5wt%SiC with 10 μm reinforced particle size showed maximum hardness and tensile strength 156.4 HV and 531.43 MPa and decrease in wear rate was observed from from 0.00307 to 0.00221 for 10N. Hybrid composites showed improved mechanical and wear resistance suitable for engine cylinder liner applications.
R. Buitrago-Sierra, J. F. Santa, J. Ordoñez,
Volume 16, Issue 3 (9-2019)
Abstract

Polypropylene (PP) has been one of the most widely used polymers due to the versatility and cost benefits obtained with this material. In this work, composites of PP modified with nanostructured ZSM-5 zeolite were prepared and their thermal and mechanical properties were evaluated. Zeolites were synthetized by hydrothermal method and the crystallization time was modified to evaluate the effect of that parameter on zeolites properties. Scanning electron microscopy, thermal analyses, x-ray analysis, among others, were used to analyse the nanostructured particles. Composites were prepared by melt mixing in a torque rheometer and compression moulding. After obtaining the composites, mechanical and thermal properties were evaluated. The results showed that some properties (surface area, and crystallinity) of zeolites depend on the crystallization time. Young’s modulus and elongation at rupture of composites were modified when the zeolites were added to the polymer matrix. No significant modifications were found on thermal properties.
M. Minbashi, R. Zarei Moghadam, M. H. Ehsani, H. Rezagholipour Dizaji, M. Omrani,
Volume 16, Issue 3 (9-2019)
Abstract

Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w::as char::acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were investigated by using UV-Vis spectroscopy technique. To characterize the porosity of the simulated structures, the PoreSTAT software which analyses the NASCAM software was employed. The optical transmissions of the samples were calculated by using NASCAM optics package. The simulation results are completely in agreement with the experimental results.
 

H. Fathi, B. Mohammad Sadeghi, E. Emadoddin, H. Mohammadian Semnani,
Volume 16, Issue 3 (9-2019)
Abstract

Abstract
In the present research, the behavior of 304L austenitic stainless steel in the deep drawing process has been studied at the room temperature through experimental and finite element simulation method. Magnetic method calibrated by XRD was used to measure induced-martensite. Martensite volume fraction in the various portion of the deep drawn cup under optimum Blank Holder Force (BHF) and in the rupture location was evaluated. Findings of the present study indicated that higher martensite volume fraction occurred in the flange portion in the drawn cup due to higher strain and stress concentration in this area. Also, rupture happened at the arc portion of the wall of drawn cup with higher blank diameter due to higher strain, work hardening and martensitic transformation. Both experimental and simulation results showed that maximum LDR of 2 obtained in the forming process. All experimental procedures were simulated by LS-DYNA software, employing MAT_TRIP, and experimental results were in good agreement with the FE simulation.


Page 5 from 8     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb