Search published articles


Showing 4 results for Biomaterial

Mohammed Ruhul Amin Bhuiyan, Hayati Mamur,
Volume 18, Issue 3 (9-2021)
Abstract

Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient compared to other metal oxide materials. Thus, the nanoparticles are in the present research situation to receive increasing attention due to their potential performance of the human body to feel comfortable. The nanoparticles become more promising for biomedical applications through the development of anticancer agents to recovery different types of malignant cells in the human body. The ZnO nanoparticles can be the future potential materials for biomedical applications. The purpose of this paper is to review the cost-effective approach to synthesize the ZnO nanoparticles. Moreover, these ideas can develop for synthesized ZnO biomaterial to perform easily up-scaled in biomedical applications.
Amanda C. Juraski, Márcia M. Simbara, Vera Paschon, Sônia M. Malmonge, Juliana K.m.b. Daguano,
Volume 19, Issue 2 (6-2022)
Abstract

The success of a drug delivery system relies heavily on its interaction with cells from the target tissue. The range of applications for ibuprofen-loaded chitosan (ICH) films is widening, mainly due to the biodegradability of chitosan (CH) films and ibuprofen’s safety and versatility, with a particular interest in exploring it as neural drug delivery system. In this study, CH and 12% (w/w) ICH films were prepared through the solvent cast, and characterized regarding their physicochemical composition, surface and bulk morphology, drug release profile, and cell viability of primary neurons from the rat spinal cord. Fourier transform infrared spectroscopy (FTIR) analyses demonstrated that both groups had a similar composition. According to scanning electron microscopy (SEM) images, ibuprofen particles were entrapped on the surface and inside the polymeric matrix. In vitro drug release profile indicated that release starts as diffusion within the first hours, is best fitted by the Higuchi model, and continues for at least 30 days, in agreement with the Korsmeyer-Peppas model. Therefore, ibuprofen is first released through the diffusion process of the particles found on the surface and later through a combination of diffusion and erosion of the chitosan matrix. Regarding in vitro cell viability of primary neurons, CH and ICH extracts are non-toxic, as both groups displayed cell viability over 50%. ICH films are mildly reactive in neuronal cells, but do not cause severe cell death i.e., it allowed non-cytotoxic neuronal and glial differentiation. These findings enhanced our understanding of ICH films as a safe neural drug release system to be explored.
Seyedali Seyedmajidi, Maryam Seyedmajidi,
Volume 19, Issue 2 (6-2022)
Abstract

Recently, using calcium phosphates and at the top of them, hydroxyapatite (HA) has been considered in medical and dental applications as an artificial biomaterial due to their chemical and structural similarity to the bodychr('39')s skeletal tissues such as bone and tooth. Because of reinforcement of hydroxyapatitechr('39')s mechanical and biological properties by substitution of OH- groups by F- ions to produce fluorapaptite (FA) has been proven, in this article synthesis methods, properties and medical applications of fluorapatite and its pros and cons in comparison with hydroxyapatite have been reviewed.
Saman Sargazi, Mahtab Ghasemi Toudeshkchouei, Abbas Rahdar, Aisha Rauf, Soheil Amani, Razieh Behzadmehr, Ana M. Diez-Pascual, Francesco Baino, Muhammad Bilal,
Volume 20, Issue 1 (3-2023)
Abstract

As a major global cause of liver disease, non-alcoholic fatty liver disease (NAFLD) is characterized by excessive hepatocellular accumulation of lipids in the liver, elevated levels of hepatic enzymes, and fibrotic evidence. The primary therapies for NAFLD are changing lifestyle or managing comorbid-associated diseases. Lately, nanotechnology has revolutionized the art of nanostructure synthesis for disease imaging, diagnosis, and treatment. Loading drugs into nanocarriers has been established as a promising strategy to extend their circulating time, particularly in treating NAFLD. In addition, considering a master modulator of adipogenesis and lysosomal biogenesis and function, designing novel nanostructures for biomedical applications requires using biodegradable materials. Various nanostructures, including inorganic nanoparticles (NPs), organic-based NPs, metallic nanocarriers, biodegradable polymeric nanocarriers, polymer-hybrid nanocarriers, and lipid-based nanocarriers have been designed for NAFLD treatment, which significantly affected serum glucose/lipid levels and liver function indices. NPs modified with polymers, bimetallic NPs, and superparamagnetic NPs have been used to design sensitive nanosensors to measure NAFLD-related biomarkers. However, certain limitations are associated with their use as diagnostic agents. The purpose of this review article is to shed light on the recent advancements in the field of nanomedicine for the early diagnosis, treatment, and prognosis of this progressive liver disease.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb