Showing 4 results for Copper Oxide
Usha Vengatakrishnan, Kalyanaraman Subramanian, Vettumperumal Rajapand, Dhineshbabu Nattanmai Raman,
Volume 18, Issue 3 (9-2021)
Abstract
Copper oxide (CuO) nanostructure particles were prepared using KOH/NaOH catalyst by low cost precipitation method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and energy dispersive X-ray spectra (EDX) analysis. The photocatalytic dye degradation study of pure CuO nanostructure particles are analysed against two azo dyes (Direct black 38 (Black-E) and Congo red) under ultraviolet (UV) and solar irradiation. The release of major active species (*OH) in the photocatalytic degradation by as prepared CuO nanostructure particles were investigated by photoluminescence (PL) spectra with two different excitation wavelength (325and 355nm). The band gap of CuO nanostructure particles was calculated from diffuse reflectance spectra. The photocatalytic effect of CuO nanostructure particles is confirmed from the UV – Vis and photoluminescence spectra and also, further confirmed from the kinetic studies under UV and solar radiations. The photocatalytic degradation results revealed that 16.35% and 7.5% of black E and Congo red dye was degraded under UV, while it was 47.2% and 17.6% under solar light. The influence of pH on the photodegradation and change in the reaction temperature under solar irradiation were also analysed
Hettal Souheila, Ouahab Abdelouahab, Rahmane Saad, Benmessaoud Ouarda, Kater Aicha, Sayad Mostefa,
Volume 19, Issue 1 (3-2022)
Abstract
Copper oxide thin layers were elaborated using the sol-gel dip-coating. The thickness effect on morphological, structural, optical and electrical properties was studied. Copper chloride dihydrate was used as precursor and dissolved into methanol. The scanning electron microscopy analysis results showed that there is continuity in formation of the clusters and the nuclei with the increase of number of the dips. X-ray diffractogram showed that all the films are polycrystalline cupric oxide CuO phase with monoclinic structure with grain size in the range of 30.72 - 26.58 nm. The obtained films are clear blackin appearance, which are confirmed by the optical transmittance spectra. The optical band gap energies of the deposited films vary from 3.80 to 3.70 eV. The electrical conductivity of the films decreases from 1.90.10-2 to 7.39.10-3 (Ω.cm)-1
Saeedeh Mansoury, Maisam Jalaly, Mohammad Khalesi Hamedani,
Volume 20, Issue 4 (12-2023)
Abstract
In this study, an epoxy-based nanocomposite reinforced with copper oxide-graphene oxide hybrid was investigated. Initially, the hybrid powder of CuO–GO with a weight ratio of 9:1 was prepared. The hybrid filler with different weight percentages ranging from 0.1–0.5 was used to reinforce the epoxy resin. The prepared samples were analyzed using XRD, FTIR, FESEM, TEM, and tensile testing. According to the XRD results and SEM images, the hybrid powder was successfully prepared, and the mechanical testing results showed an improvement in tensile strength in the composite samples. The best composite sample in terms of tensile strength was the one containing 0.3 wt% of hybrid reinforcement, which exhibited a 73% increase in strength compared to the neat resin sample.
Shatha Batros, Farqad Rasheed, Hussein Hussein,
Volume 22, Issue 1 (3-2025)
Abstract
The copper oxide nanoparticles were synthesized using a precipitation method, recognized for its significance in antibacterial applications. This study reports the synthesis of pure CuO and CuO:Cd nanoparticles at two different concentrations, and explores their structural properties and antibacterial activity. The structural characteristics of the prepared powders were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Raman spectra were also examined using a 543 nm laser wavelength. XRD analysis confirmed that the as-synthesized samples exhibit a face-centered monoclinic structure, with crystallite size decreasing as dopant concentration increases, as estimated using the Scherrer method. The obtained crystallite sizes ranged from 7.13 to 11.72 nm, likely due to the larger atomic radius of Cd compared to Cu. The major Raman lines observed included Au2 (156 cm^-1), Ag (∼294 cm^-1), Bu2 (∼598 cm^-1), and lines at 1100 cm^-1 and 1420 cm^-1. The antibacterial activity of the synthesized CuO and CuO:Cd specimens was evaluated using the Kirby-Bauer disk diffusion method against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The antibacterial activity increased with higher Cd concentrations and smaller particle sizes, resulting in larger inhibition zones and higher percentage inhibition ratios for both types of bacteria.
The copper oxide nanoparticles were synthesized using a precipitation method, recognized for its significance in antibacterial applications. This study reports the synthesis of pure CuO and CuO:Cd nanoparticles at two different concentrations, and explores their structural properties and antibacterial activity. The structural characteristics of the prepared powders were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Raman spectra were also examined using a 543 nm laser wavelength. XRD analysis confirmed that the as-synthesized samples exhibit a face-centered monoclinic structure, with crystallite size decreasing as dopant concentration increases, as estimated using the Scherrer method. The obtained crystallite sizes ranged from 7.13 to 11.72 nm, likely due to the larger atomic radius of Cd compared to Cu. The major Raman lines observed included Au2 (156 cm^-1), Ag (∼294 cm^-1), Bu2 (∼598 cm^-1), and lines at 1100 cm^-1 and 1420 cm^-1. The antibacterial activity of the synthesized CuO and CuO:Cd specimens was evaluated using the Kirby-Bauer disk diffusion method against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The antibacterial activity increased with higher Cd concentrations and smaller particle sizes, resulting in larger inhibition zones and higher percentage inhibition ratios for both types of bacteria.