Search published articles


Showing 4 results for Heating

Morakabati M., Arabi H., Mirdamadi Sh., Abbasi S.m.,
Volume 2, Issue 2 (6-2005)
Abstract

This study was launched to investigate the effects of heating rate and aging parameters on the kinetic of precipitation reactions in a high alloy high strength steel having Ni, Co, Mo and Ti. For this purpose, as quenched specimens were subjected to three types of aging methods with different heating rates. These methods consisted of aging in Pb bath, salt bath, and furnace at different aging cycles. The kinetic of precipitation in each method was studied by hardness measurements and was described adequately by the Johnson-mehl-Avrami equation. Remarkable increase in hardness and its rate is observed when the rate of heating increases. The substantial increase in hardness of the specimens aged rapidly in salt & Pb baths, compared with those aged normally in furnace, seemed to be due to the formation of thermo elastic stresses during sudden expansion of the substance subjected to rapid heating. According to the results obtained in this research, increase in the Avrami constants, n & k, and decrease in the start time of transformation, ts, are associated with heating rate increasing. Analysis of the observed and calculated data for hardness using Arrhenius equation, shows that for the same amount of volume fraction of precipitates, the activation energy of precipitates decreased for f=25 and 50%, while at f=90 % it increased by increasing heating rate.
V. Lykhoshva, A. Tymoshenko, L. Mosentsova, V. Savin, D. Schitz,
Volume 15, Issue 1 (3-2018)
Abstract

This article studies the particle temperature distribution depending on the laser radiation power and the particle’s trajectory and velocity. The uneven heating of particles moving in the laser radiation field is identified. The regimes of laser heating without melting, with partial melting, and with complete particle melting are considered.

Saeed G. Shabestari, Sahar Ashkvary, Farnaz Yavari,
Volume 18, Issue 3 (9-2021)
Abstract

The influence of melt superheating treatment on the solidification characteristics and microstructure of Al–20%Mg2Si in-situ composite has been investigated. The results revealed that melt superheating temperature has a significant effect on solidification parameters and morphology of primary Mg2Si particles. Solidification parameters acquired using cooling curve thermal analysis method, indicate that both nucleation temperature and nucleation undercooling of primary Mg2Si particles increase by increasing melt superheating temperature, while recalescence undercooling decrease under the same condition. Also, based on the microstructural evaluations, melt superheating treatment can refine primary Mg2Si particles and alter their morphology from dendritic shape to more spherical shape and the eutectic microstructure of a-Al + Mg2Si becomes finer and the distance between eutectic layers becomes smaller.
 

Mitra Ghannadi, Hediye Hosseini, Bagher Mohammad Sadeghi, Bahman Mirzakhani, Mohammad Tahaaha Honaramooz,
Volume 18, Issue 3 (9-2021)
Abstract

The objective of the present paper is to investigate the effects of rapid heating and cryogenic cooling on on the microstructure and tensile properties of Al-Cu-Mg. The specimens were subjected to three heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 190⁰C and from 2 hours to 10 hours, respectively.The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method leads to faster diffusion of the alloying elements. Moreover, the high density of nano-sized precipitates formed during ageingleads to higher strength and suitable ductility. Cryogenic treatment showed a negligible effect on both microstructure and tensile properties; however, it improved ductility. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrograph of the fracture surface of alloy demonstrated that in Cryogenic treatment+Artificial Ageing (CAA) condition, the surface had been fully covered by deep dimples in contrast to the Cryogenic treatment+Infrared Heating (CIR) and Water-Quench+ Infrared Heating (QIR) conditions which their dimples were shallow and also some facets were observed.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb