Search published articles


Showing 2 results for Mossbauer

S. Mirzaei, H. Saghafian, A. Beitollahi, J. Świerczek, P. Tiberto,
Volume 16, Issue 3 (9-2019)
Abstract

In the present research, rapidly solidified Fe85.3B11P3Cu0.7 ribbons were prepared by melt spinning process. The microstructural variation as well as magnetic properties of the as-spun and annealed ribbons were characterized by X-ray diffraction (XRD), transmission Mossbauer spectroscopy and alternating gradient field magnetometer (AGFM). The results show two separated distinct exothermic peaks during heating resulting from the phase transition from amorphous to α-Fe and then to Fe3B, respectively. The study of magnetic properties in the amorphous and nanocrystalline states revealed that annealing the amorphous ribbons at 440˚C for 10 minutes gives rise to a significant increase in saturation magnetization (220 emu/g) which makes this alloy a good candidate for power applications.
Najwa Gouitaa, Lamcharfi Taj-Dine, Bouayad Lamfaddal, Abdi Farid, Mohamed Ounacer, Mohammed Sajieddine,
Volume 18, Issue 2 (6-2021)
Abstract

    The structural and dielectric properties of iron and bismuth co-substituted BaTiO3 ceramic with the formula: B0.95Bi0.05Ti1-xFexO3 for x=0.00 to 1.00, synthesis with solid state route, were characterized.     The X-ray diffraction results show a tetragonal phase for x=0.00. While for x=0.40 to 0.80 we observed a coexistence of tree phase tetragonal, hexagonal and pseudo-cubic. And at x=1.00 only the pseudo-cubic phase is present and the other phase disappeared. The Raman results indicate the existence of tetragonal band for x≤0.40, and an appearance of characteristic bands of Fe3+ ions for more than 0.40 of Fe content. The SEM micrographs show an increase in grain size with the increase of Fe content and it reaches a maximum at x=0.40.  And the Mossbauer spectroscopy indicates that our samples is paramagnetic at room temperature and that the Fe is   oxidized under Fe3+ with no existence of Fe2+ and Fe4+ ions. The temperature dependence of dielectric permittivity was investigated in the frequency range from 20 Hz to 2MHz. The results show three dielectric relaxation phase transitions from a rhombohedral ferroelectric to orthorhombic ferroelectric (TR-O) then to a tetragonal ferroelectric phase (at TO-T), and finally to cubic paraelectric at the Curie temperature (TC).  In addition, the temperature of phase transition shifted to the lower temperature with the increase of Fe content for all the phase transitions. And the maximum of dielectric permittivity increases for TR-O while for TT-O and Tm phases transitions, it reaches a maximum at x=0.60 and x=0.80 respectively and then decreases.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb