Search published articles


Showing 2 results for Primary Silicon

M. Ghalambaz, M. Shahmiri,
Volume 5, Issue 3 (9-2008)
Abstract

Abstract: Cooling slope-casting processing is a relatively new technique to produce semisolid cast feedstock for the thixoforming process. Simple equipment, ease of operation, and low processing costs are the main advantages of this process in comparison with existing processes such as mechanical stirring, electromagnetic stirring, etc. The processing parameters of cooling slope casting are length, angle and the material of the inclined plate and their combinations, which usually affect the micro structural evolutions of the primary solid phase. In order to clarify the effect of the processing parameters on the evolution of the particle size, based on experimental investigation, Artificial Neural Network (ANN) was applied to predict the primary silicon crystals (PSCs) size of semisolid cast ingot via a cooling slope casting process of Al-20%(wt.%) Si alloy. The results demonstrated that the ANN, with 2 hidden layers and topology (4, 3), could predict the primary particle size with a high accuracy of 94%. The sensitivity analysis also revealed that material of the cooling slope had the largest effect on particle size.
B. Sharif, H. Saghafian, H. Razavi,
Volume 15, Issue 2 (6-2018)
Abstract

In the present research, thixoforming route was carried out in order to enhance the microstructural features of LM28 piston alloy. Typical microstructure of this alloy was composed of coarse, polygonal primary silicon particles, eutectic matrix and intermetallic phases. Thermal analysis was carried out to study the solidification path of the base alloy and determine the major arrest temperatures of metallurgical reactions. Continuous and iso-thermal mechanical stirring were utilized to produce non-dendritic LM28 alloy feedstock for further processing. The rheocast samples were subjected to a rotation speed of 450 rpm. The slugs machined from the solidified rheocast specimens were heated in the mushy zone temperature and then were thixoformed via a laboratory press. The thixoformed specimens show a relatively homogenous microstructure and present no evidence of porosities. Fine, blocky primary silicon and Fe-rich intermetallic particles were uniformly distributed in the matrix of LM28 alloy. Optical microscope and scanning electron microscope linked with EDX were used to investigate the microstructure of specimens


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb