Showing 5 results for Trip
Nosrati F., Zarei Hanzaki A.,
Volume 3, Issue 3 (12-2006)
Abstract
TRIP (TRansformation- lnduced- Plasticity) behavior is a powerful mechanism to improve mechanical properties. The basis of TRIP phenomena is the transformation of retained austenite with optimum characteristics (volume fraction, stability, size and morphology) to martensite during deformation at room temperature. Accordingly, the first requirement to obtain desired TRIP effects is to produce an appropriate microstructure. Thermo mechanical processing is an effective method to control the microstructural evolution thereby mechanical properties in TRIP steels. This work deals with a TRIP steel containing 0.2% C, evaluating the effects of straining before and during ?®a atransformation on its final characteristics, using hot compression tests. The results revealed that straining in the two phase region (dynamic transformation) not only reduces the ferrite grain size more significantly, but also increases the retained austenite volumefraction. Accordingly the final mechanical properties were also improved.
K. Ghadarghadr Jahromi, , A. Zarei-Hanzaki, O. Golmahalleh,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: In the present investigation, the effects of thermomechanical processing parameters and
the steel chemical composition on the ultra fine ferrite formation characteristics were studied.
This was programmed relying on the capabilities of strain induced transformation (SIT)
phenomenon and applying to different grades of Si-Mn TRIP (Transformation Induced Plasticity)
steels. Accordingly, wedge shaped specimens were rolled at two different temperatures, above and
below the austenite-to-ferrite transformation temperature (Ar3). An ultra fine ferrite grain size, in
the scale of some hundred nanometers, was obtained by rolling the specimens with lower Si
content at a temperature below the related Ar3 temperature. The amount of reduction, which was
resulted in the latter microstructure, was realized to be about 55%.
S. Gholami Shiri, Y. Palizdar, . A. Jenabali Jahromi, Eduardo F. de Monlevade,
Volume 15, Issue 3 (9-2018)
Abstract
The relation between microstructure and the fracture mechanisms of δ-TRIP steel with different Nb-content has been investigated using complementary methods of light microscopy, SEM, EDS, EBSD, X-ray phase analysis and tensile test. The results revealed a close dependency between the presences of constitutive phases i.e. ferrite, bainite, retained austenite and martensite and the mode and characteristics of fracture. All samples revealed almost different fractography pattern which could be associated to the effect of Nb microalloying element. The different fractography patterns were consisted of dimple rupture, riverside and Wallner lines pattern. The proportion of the cleavage fracture in comparison of dimple rapture increased by increasing the Nb-content due to the increase of primary martensite in the microstructure.
F. Hosseinabadi, A. Rezaee-Bazzaz, M. Mazinani, B. Mohammad Sadeghi,
Volume 17, Issue 1 (3-2020)
Abstract
An experimental–numerical methodology was used in order to study the microstructural effects on stress state dependency of martensitic transformation kinetics in two different TRIP800 low alloy multiphase steels. Representative volume elements extracted from actual microstructure have been utilized for simulating the mechanical behavior of mentioned steels. The mechanical behavior for each constituent phases required in the model has been taken out from those reported in the literature. A stress invariant based transformation kinetics law has been used to predict the martensitic phase transformation during deformation. Crystallographic and thermodynamic theories of martensitic phase transformation have been utilized for estimating the constant parameters of the kinetics law, in a recently performed investigation, but the sensitivity of the transformation to the stress state remained as an adjusting parameter. The results of the current work show that the stress state sensitivity of martensitic phase transformation in the investigated steels is microstructure-dependent and the value of this parameter is almost equal to half of the bainite volume fraction. Therefore, the volume fraction of bainite in the low-alloy multiphase TRIP800 steels can be used as a first postulation for the value of the martensitic phase transformation sensitivity to the stress state and the microstructure based model previously developed for calculating the mechanical behavior of the TRIP800 steels can be utilized as a virtual design tool for development of TRIP steels having specific mechanical properties.
Ali Ebrahimpour, Amir Mostafapour, Naeimeh Hagi,
Volume 20, Issue 1 (3-2023)
Abstract
In this research, the effect of RSW parameters including current intensity, welding time and welding force (coded by A, B and C) on the radius, thickness and area of the nugget and the radius of the HAZ of TRIP steel joints was investigated by DOE and RSM. A 3D coupled thermal-electrical-structural FEM was used to model RSW. To validate the FE model, two TRIP steel sheets were welded experimentally. During welding, the temperature was measured and the results were compared with the FE results and a good agreement was obtained. The boundaries of the welding zones were determined according to the critical temperatures and the responses in all samples were calculated. Using analysis of variance, direct, quadratic and interaction effects of parameters on the responses were studied and a mathematical model was obtained for each response. The direct linear effects of all parameters on all responses were significant. But among the interaction effects, the effect of B×C on the nugget radius, the effect of A×B on the nugget thickness, the effect of A×B on the nugget area and the effects of A×B and B×C on the HAZ radius were significant. Also, current intensity had the greatest effect on all responses.