Showing 4 results for Alkali
A. Allahverdi, E. Najafi Kani, S. Esmaeilpoor,
Volume 5, Issue 2 (6-2008)
Abstract
Abstract: The use of alkali-activated cementitious materials especially over the past decades has
significantly been increased. The goal of this research is to investigate the effects of silica modulus
and alkali concentration on alkali-activation of blast-furnace slag. In this research, the most
important physical characteristics of cementitious systems, i.e. the 28-day compressive strength
and final setting time, were studied by changing influencing parameters such as silica modulus,
i.e. SiO2/Na2O, (0.44, 0.52, 0.60, and 0.68) and Na2O concentration (4, 6, 8 and 10% by weight of
dry binder) at a constant water-to-dry binder ratio of 0.25. Final setting time of the studied
systems varies in the range between 55-386 minutes. The obtained results show that systems cured
at an atmosphere of more than 95% relative humidity at room temperature exhibit relatively high
28-day compressive strengths up to 107 MPa.
A. Allahverdi, H. Hashemi, M. Mahinroosta,
Volume 17, Issue 1 (3-2020)
Abstract
This work evaluates the resistance of alkali-activated slag (AAS) mortar against sodium sulfate attack. The effects of immersion in 5% sodium sulfate solution under room temperature and wetting-drying cycles on the compressive strength of mortar specimens were considered for evaluating the extent of degradation. Mortar specimens prepared from type II and V Portland cements (PC2 and PC5) in accordance with ASTM standard were also used as reference. To characterize the chemical products of the degradation process due to sodium sulfate attack, the specimens were also studied by X-ray diffractometry, scanning electron microscopy, and the elemental analysis by energy dispersive X-ray spectroscopy. After 360 days of exposure to the sodium sulfate solution, PC2, PC5 and AAS cements showed 71, 52 and 45% reduction in compressive strength, respectively. According to the obtained results, AAS cement exhibits a higher sulfate resistance compared to PC2 and PC5.
Anas Al-Reyahi, Salem Yahya Degs, Ayman Issa, Zyad Khattari, Mohammed Abu Al Sayyed,
Volume 18, Issue 4 (12-2021)
Abstract
The structural properties of a natural clay sample (51% kaolinite) were tweaked to suit specific applications. H2SO4 and NaOH (1.0 M) treatment caused structural alterations and a significant release of Al ions compared to Si ions. Chemical treatment caused structural alterations, according to XRD analysis. FTIR analysis also indicated higher density of polar surface groups upon treatment which affected the corresponding dielectric behaviors. Dielectric measurements shown the suitable application of the materials either as dielectrical insulator and this dependent on the applied frequency. Acid treated kaolinite was reported to be a promising dielectric at 10 and 1000 Hz. With appropriate mass attenuation coefficients (μ/ρ) 12.098-12.182 cm2/g and a high half value layer of 10 cm at 10 keV, kaolinite and other treated forms were adequate shielding materials.
Nailia Rakhimova, Vladimir Morozov, Aleksey Eskin, Bulat Galiullin,
Volume 20, Issue 3 (9-2023)
Abstract