Abstract: (11550 Views)
The evaluation of seismic slope performance during earthquakes is important, because the failure of slope (such as an earth dam, natural slope, or constructed earth embankment) can result in significant financial losses and human. It is important, therefore, to be able to forecast such displacements induced by earthquake. However, the traditional forecasting methods, such as empirical formulae, are inaccurate because most of them do not take into consideration all the relevant factors. In this paper, new intelligence method, namely relevance vector regression (RVR) optimized by dolphin echolocation (DE) and grey wolf optimizer (GWO) algorithms is introduced to forecast the earthquake induced displacements (EID) of slopes. The DE and GWO algorithms is combined with the RVR for determining the optimal value of its user-defined paramee RVR. The performances of the proposed predictive models were examined according to two performance indices, i.e., coefficient of determination (R2) and mean square error (MSE). The obtained results of this study indicated that the RVR-GWO model is a reliable method to forecast EID with a higher degree of accuracy (MSE= 0.0160 and R2= 0.9955).
Type of Study:
Research |
Subject:
Applications Received: 2020/03/18 | Accepted: 2020/03/18 | Published: 2020/03/18