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ABSTRACT

This paper presents the chaotic variants of the particle swarm optimization-statistical
regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle,
Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the
performance of the PSO-SRM. These maps are utilized instead of the random number,
which defines the solution generation method. The robustness and performance of these
methods are tested in the three steel frame design problems, including the 1-bay 10-story
steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization
results reveal that the applied chaotic maps improve the performance of the PSO-SRM.
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1. INTRODUCTION

Due to resource limitations, the optimum design of the structure has been the most popular
research item in the last four decades [1, 2]. Gradient-based methods and metaheuristic
algorithms are two well-known optimization methods. Metaheuristic algorithms are easily
coded and do not need gradient information [3, 4]. Hence, metaheuristic algorithms are
popular optimization methods for optimizers. Therefore, metaheuristic algorithms are used
by the structural optimizer in the different optimization problems.

A single optimization method cannot solve all kinds of optimization problems efficiently.
Hence, researchers have invented different optimization methods [5]. Some of the new of
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them can refer to, Across Neighbourhood Search (ANS) introduced by Wu [6], Andean
Condor Algorithm presented by Almonacid and Soto [7], Artificial Electric Field Algorithm
(AEEA) developed by Anita and Yadav [8], Cheetah Based Algorithm (CBA) introduced by
Klein et al [9], Coyote optimization algorithm (COA) developed by Pierezan and Coelho
[10], Emperor Penguins Colony (EPC) presented by Harifi et al. [11], Flow Regime
Algorithm (FRA) presented by Tahani and Babayan [12], Hunger Games Search (HGS)
developed by Yang et al. [13], Monarch Butterfly Optimization (MBO) introduced by Wang
et al. [14], Newton Metaheuristic Algorithm (NMA) developed by Gholizadeh et al. [15],
Lion algorithm (LA) is introduced by Rajakumar [16], Pity Beetle Algorithm (PBA)
developed by Kallioras et al. [17], Shuffled shepherd optimization algorithm (SSOA)
presented by Kaveh and Zaerreza [18], Squirrel Search Algorithm (SSA) developed by Jain
et al. [19], Team Game Algorithm (TGA) presented by Mahmoodabadi et al. [20], and
Queuing search algorithm (QSA) developed by Zhang et al. [21].

In the field of structural optimization, metaheuristic algorithms are used by different
researchers for their optimization problems, such as Kaveh and Talatahari [22] applied the
enhanced charged system search in the configuration optimization problem. Mohebian et al.
[23] utilized differential evolution (DE) in the structural damage detection problem. Al
Thobiani et al. [24] applied the hybrid version of the PSO and gray wolf optimization
method to the crack detection problem. Kaveh and Rahami [25] utilized the genetic
algorithm for the optimum design of the structures. Kazemzadeh Azad et al. [26] developed
the upper-bound strategy framework for the optimum design of structures using meta-
heuristic algorithms. Alkayem et al. [27] presented a new enhanced version of the PSO for
the structural damage detection problem.

One of the efficient ways to improve the performance of meta-heuristic algorithms is by
applying chaotic maps [28]. In the metaheuristic algorithms, chaotic maps are used instead
of the random number in the main cycle of the optimization methods. Some of the recent
applications of chaotic maps in improving the metaheuristic algorithms are listed as follows.
Talatahari et al. [29] applied chaotic maps to improve the performance of the charged
system search algorithms. Kaveh and Yousefpoor [30] developed enhanced metaheuristic
algorithms using chaotic maps for the optimum design of the truss. Gharehchopogh et al.
[31] developed the chaotic vortex search for future selection. Das and Saha [32] applied
chaotic maps to structural health monitoring problems. Talatahari et al. [33] presented the
chaotic imperialist competitive algorithm for the optimum design of the structure. Kaveh
and Javadi [34] developed the chaotic firefly algorithms for the optimum design of large-
scale structures.

This paper presents the chaotic variant of the particle swarm optimization-statistical
regeneration mechanism (PSO-SRM). For this purpose, nine chaotic maps are considered,
including the Chebyshev, Circle, lterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and
Tent. These maps are used instead of the random number, which defines the solution
generation method. The efficiency of the chaotic variants of the PSO-SRM is tested in the
three steel frames. In these examples, the efficiency of the force method is previously
approved by Kaveh and Zaerreza [35]. Therefore, the force method is utilized as the
analyzing method. More information about the force method is available in ref [2]. The
optimization problem results show that the chaotic maps improve the performance of the
PSO-SRM algorithm.
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2. PARTICLE SWARM OPTIMIZATION-STATISTICAL REGENERATION
MECHANISM (PSO-SRM)

The improved version of the particle swarm optimization algorithms utilizing the statistical
regeneration mechanism (SRM) is presented in this section, which is developed by Kaveh
and Zaerreza [35]. In the PSO-SRM, the statistical regeneration mechanism is utilized. This
mechanism improves the performance of the different optimization methods, such as Rao
algorithms[36]. In the PSO-SRM, fifty percent of the solution is generated utilizing the basic
particle swarm optimization algorithm, and the remaining solution is generated using the
statistical regeneration mechanism (SRM). In order to add the SRM, in the first fifty percent
of the optimization cycles, twenty percent variable of the considered solution is regenerated
using the SRM. In the remaining iterations, only one variable of the solution is regenerated
utilizing the SRM. The steps of the PSO-SRM are provided as follows.

Step 1: Initialization

In the initialization step, the solutions are generated randomly in the search space using
Eq ().

P? = Ppin+7d X (Ppax— Pmin) @ = 1,2,3,..,n (1)

in which P? is the initial value of the ith particle in the search space. P,,;, and P, are
the lower and upper bound of the search space. rd is the random vector generated between 0
and 1. n is the number of the particle, which is defined by the user.

Step 2: Define the new solution generation method

In order to find which solution generation method is utilized, a random number is
generated. If the value of the random number is less than a, then the solution is generated
using the basic PSO solution generation method, so the algorithm goes to step 3. Otherwise,
the statistical regeneration mechanism (SRM) is utilized to generate the new solution, and
the algorithms go to step 4.

Step 3: Generate the new solution based on the PSO

The solution generation based on the PSO consists of three components, including the
step size of the solution in the previous iteration, moving toward the best solution obtained
by the entire population, and moving toward the best solution obtained by the considered
solution. Therefore, the new solution is generated utilizing the following equation.

Pl =w x (Pf— PEY) + ¢ X rand; X (Pib _ pit) + ¢, X rand, @)
% (PiGb _ Pit)

where Pf*1 is the new position of the ith particle in the t+1th iteration. Pf and P/~* are the
positions of the ith particle in the tth and t-1th iteration. P? is the best solution obtained by
the considered particle. PF? is the best solution obtained by the whole of the particles. w is
the parameter which is the value of it is set to 1 and decreased by 0.01 percent in each
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iteration. c; and c, are user-defined parameters.

Step 4: Generate the new solution using the SRM

In order to generate the new solution using the SRM, the considered solution is replaced
with the PP. Then, in the first fifty percent of the iteration, twenty percent variable of the
considered solution is selected and regenerated utilizing Eq (3). Otherwise, one variable of
the considered solution is selected randomly and regenerated using Eq (3).

Pl = U(Mean — Std — Sigma, Mean + Std + Sigma) 3)

where U is the operator that returns a random number generated from the continuous
uniform distribution with lower and upper endpoints specified by Mean — Std — Sigma
and Mean + Std + Sigma. Mean and Std are the average and standard deviation of the best
solutions found by the particles. Sigma is a parameter that helps the statistically regenerated
mechanism to work efficiently when the entire population converges to the specified value
and is defined as follows.

3 IfStd < 0.01X (Prax — Prin)

Si =
tfgma {0 otherwise

(4)

The value of the 3 is considered for the Sigma by testing the different functions and
values. Due to using the rounding function to connect the discrete optimization problem to
continuous optimization methods, using the constant value of the 3 it means that in Eq (3) at
least 3 bigger or smaller sections than Mean are selected.

Step 5: Check the termination condition

The maximum number of iterations is considered as the termination condition of the
algorithm. If the termination condition is satisfied, the optimization process is stopped, and
the PFP is reported. Otherwise, the algorithm goes to Step 2 for the next cycle of
optimization.

3. CHAOTIC PARTICLE SWARM OPTIMIZATION-STATISTICAL
REGENERATION MECHANISM

In this study, nine chaotic maps are considered, and the performance of PSO-SRM is
investigated using these maps. These maps include the Chebyshev [37], Circle [38],
Iterative[39], Logistic[39], Piecewise[40], Sine[41], Singer [42], Sinusoidal [43], Tent[44].
These maps are used in step 2 of the PSO-SRM. In step 2, the chaotic maps are utilized
instead of the random number. Therefore, there are nine different variants of the PSO-SRM
provided in this study. The name of the algorithms using these maps and the mathematical
formulation of the chaotic maps are provided in Table (1), and visualization of them is
provided in Figure 1.
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Table 1. Formulation of the chaotic maps

Name of Name of the
algorithm using Chaotic map
map
the map
Chebyshev ~ ChPSO-SRM x4, = cos(icos™1(x;))
. . 0.5
Circle CiPSO-SRM Xiy1 = mod (x; + 0.2 — (E) sin(2mxy), 1)
. . (0.7
lterative ~ IPSO-SRM Xipq = sm( )
i
Logistic LPSO-SRM Xipvq = 4x;,(1 —x;)
x.
Fl 0 < X <P
X; — P
Piecewise ~ PiPSO-SRM  x;,, = | ) P0-5 —P ,P =04
\ % 1-P<x <1
a
Sine SinePSO-SRM Xizq1 = Zsin(nxi), a=4%
= - 2 3 _ 4
Singer  SingPSO-SRM Xip1 = y(7.86x;1 _213(.)371xl +28.75 x? — 13.302875x}),
Sinusoidal ~ SinuPSO-SRM Xip1 = ax?sin(mx;), a=2.3
x.
0_f7 X; < 0.7

?(1 — Xi) xX; = 0.7

Chebyshev map

1 T T T T 1
0.9F q J oot
0.8 0.8 J

Circle map

0.7 0.7
0.6 - H 0.6 |-

= 0.5 = 0.5
04 3 0.4
0.3 7 0.3
0.2 b 0.2
0.1 a 0.1

a 0
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Figure 1. Behaviour of the chaotic maps

4. NUMERICAL EXAMPLES

Three 2D steel frame is considered in this study to investigate the performance of the chaotic
variants of the PSO-SRM. These examples are 1-bay 10-story steel frame, 3-bay 15-story
steel frame, and 3-bay 24-story steel frame. In these examples, AISC-LRFD requirements
are fulfilled for the stress and displacement limitation. The population size is 20, and the
maximum number of function evaluations is 20000. ¢, and c, are set to 2 in all of the
variants of the PSO-SRM. a is set to 0.8 in the chaotic variants of the PSO-SRM, and a is set
to 0.5 in the basic PSO-SRM algorithms.

4.1 The 1-bay 10-story steel frame

The 1-bay 10-story is the first skeletal example considered in this study to examine the
performance of the chaotic algorithms, as shown in Figure 2. The members of this structure
are divided into the 9 element groups. The section for the beam members is selected from
the 267 W-section, and the section for the column elements is selected from W 12 and W 14
sections. The elasticity modulus and yield stress of the members are set to 29000 ksi and 36
ksi, respectively.
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Figure 2. The schematic of the 1-bay 10-story steel frame.
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The results obtained by the basic algorithms and chaotic variants of the PSO-SRM are
provided in Table 2. According to this Table, all chaotic variants of the PSO-SRM can find
the optimum result same as the basic algorithms. The worst weight of the 30 independents
run of the ChPSO-SRM, CiPSO-SRM, LPSO-SRM, SinuPSO-SRM and TPSO-SRM is
better than the basic algorithms. In term of the average weight, only the results of the Ci-
PSO-SRM is worse than basic PSO-SRM. The other chaotic algorithms have better average
weights than basic PSO-SRM algorithms. Convergence history for the best and average run
of the PSO-SRM and chaotic variants of it is provided in figures 3 and 4.

Table 2. Comparison results of the chaotic variants of PSO-SRM in the 1-bay 10-story steel

frame
E"f]{“e 2?& ChPSO  CiPSO-  IPSO-  LPSO- PiPSO-  SinePS  SingPS  SinuPS  TPSO-
SRM  SRM  SRM  SRM  SRM O-SRM O-SRM O-SRM  SRM
group [35]
. WIbZ WI2 WI2  WI2  WIaxZ WIxZ WIix2 WIdx2  WIAx2  WIax2
33 33 33 33 33 33 33 33 33 33
, Wil WLAXL WIAxI WI4xI  Wi4xl WIaxl WLAxL WILAx1  WIdxI  Wi4xl
76 76 76 76 76 76 76 76 76 76
, WigxI WIdxI Wldx1 WI4x1 WIAxL WI4xL Wil Widxl  Widxl  WIdx]
59 59 59 59 59 59 59 59 59 59
, W49 WIAx9  WIAx9  WI4x9 WI4x9 WI4x0 WI4x9  WIAX9  WI4x9  WI4x9
9 9 9 9 9 9 9 9 9 9
s WIx6 WLAx6 WI4x6 WI4x6 WI4x6 WI4x6 WLAx6 WI4X6 WI4x6  WI4x6
1 1 1 1 1 1 1 1 1 1
6 W33x1 W33x1 W33x1 W33x1 W33x1 W33x1 W33x1 W33x1 W33x1 W33x1
18 18 18 18 18 18 18 18 18 18
S W30x0 W30x9 W30x9  W30x9 W30x0 W30x0 W30x9 W30x9 W30x9  W30x9
0 0 0 0 0 0 0 0 0 0
g W27x8  W27x8  W27x8  W27x8  W27x8 W27x8  W27x8  W27x8  W27x8  W27x8
4 4 4 4 4 4 4 4 4 4
o  WIBx4 WISx4 WIBx4 WISx4 WIBx4 WIBx4 WISx4 WISx4 WISx4 Wisx4
6 6 6 6 6 6 6 6 6 6
Best 640019 640019 640019 640019 640019 640019 640019 640019 640019 640019
(Ib) 8 8 8 8 8 8 8 8 8 8
Worst 66150.0 652038 66017.2 66987.8 66013.6 66668.6 665519 666359 66027.0 66138.1
(Ib) 2 2 4 3 3 2 8 6 9 1
Mean 64607.0 643284 646726 645613 644736 643807 645584 645458 645418 64319.3
(Ib) 8 1 1 1 1 0 5 8 4 4
SD 64086 33076 64630 69624 50476 58012 71044 72971 57265 439.74

(Ib)
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Figure 3. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the
1-bay 10-story steel frame
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Figure 4. Convergence histories for the average run of the PSO-SRM and chaotic algorithms for
the 1-bay 10-story steel frame

4.2 The 3-bay 15-story steel frame

The second example investigated in this study is the 3-bay 15-story steel frame. The
structural members of this example are divided into 10 groups for the column member and
one group for the beam members, as shown in Figure 5. The section for the beam and
column members are picked from the 267 W-section. The elasticity modulus and yield stress
of the members are set to 29000 ksi and 36 ksi, respectively. In addition to the AISC-LRFD
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requirements, the maximum last story sway is limited to 9.25 in.
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Figure 5. The schematic of the 3-bay 15-story steel frame
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The optimization result is summarized in Table 3. According to this Table, SinePSO-
SRM obtained a better weight (86916.97 Ib) than other considered methods. In addition, the
chaotic methods named ChPSO-SRM, CiPSO-SRM, PiPSO-SRM, SinePSO-SRM,
SingPSO-SRM, and TPSO-SRM obtained the better result than PSO-SRM. The statistical
result obtained by the ChPSO-SRM is better than the basic algorithm. The improvement in
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the optimum result and statistical results shows that the chaotic maps considered in this
study perfectly enhance the performance of the PSO-SRM. Convergence history for the best
and average run of the PSO-SRM and chaotic variants of it is provided in Figs 6 and 7.

Table 3. Comparison results of the chaotic variants of PSO-SRM in the 3-bay 15-story steel

frame
Elemen  PSO- ChPSO-  CiPSO- _ IPSO- LPSO-  PiPSO-  SinePSO  SingPSO  SinuPSO  TPSO-
tgroup  SRM SRM SRM SRM SRM SRM -SRM -SRM -SRM SRM
[35]
1 WI12x96  W16x89 WI16x89 W16x80 WI14x99 WI16x89 WI14x90 W14x99  W24x94  \W14x99
2 W27x16  W36x17 W36x17 W36x17 W27x16 W36x17 W36x17 W27x16 W30x17  W27x16
1 0 0 0 1 0 0 1 3 1
3 W27x84  W27x84  W14x82 W27x84 W27x84 W14x82 W27x84 W27x84 WI8x76 \W27x84
4 W21x11  W24x10  W24x10 W24x10 W24x10 W24x10 W24x10 W24x10 W24x11  W24x10
1 4 4 4 4 4 4 4 7 4
5 W14x61  WI14x61 W21x68 W21x68 W21x68 W21x68 WI14x61 W14x61 WI2x58  W14x61
6 W30x90  W30x90 W18x86 W18x86 \W18x86 WI18x86 W30x90 W30x90 W30x90  W30x90
7 W8x48  W8x48  WI14x48 W12x45 W8x48  W14x48 W8x48  W14x48 W10x45  W8x48
8 WI2x65 WI12x65 WI12x65 W21x68 WI12x65 WI2x65 WI2x65 W21x68 W14x68  WI12x65
9 W6x25 — W8x28  W8x28  W8x28  W8x28  W8x28  W6Bx25  W6x25  W8x24  \W8x28
10 W8x40  WI10x39 W10x39 WI10x39 WI10x39 WI10x39 W8x40  W8x40  WI16x40 WI10x39
11 W21x44  W21x4d  W21x4d  W21x44 W21x44  W21x44  W21x44  W2lxdd  W21x44  W21x44
Best 871833 870549 871239 872619 872619 871239 869169 871239 872025 870549
(Ib) 9 7 5 6 5 5 7 6 8 7
Worst 888617 882183 919564 883065 880465 886049  88099.5 91873.2 907755  91611.4
(Ib) 7 6 3 4 5 3 2 1 8 4
Mean 876065 87591.3  88199.9 87709.0 876106 87767.1 87572.4 876613 877480 881026
(Ib) 4 9 9 4 4 9 0 5 9 6

SD (Ib)  318.36 291.51 1094.61  268.92 241.13 400.05 308.66 821.26 810.33 1246.65
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Figure 6. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the
3-bay 15-story steel frame
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Figure 7. Convergence histories for the average run of the PSO-SRM and chaotic algorithms for
the 3-bay 15-story steel frame

4.3 The 3-bay 24-story steel frame

The last example considered in this study to examine the performance of the methods is the
3-bay 15-story steel frame. This frame is made up of 168 members, which are divided into
20 groups, as shown in Figure 8. The section of the column member is selected from W 14
sections, and the beam elements are picked from 267 W sections. The elasticity modulus and
yield stress of the members are set to 29732 ksi and 33.4 ksi, respectively.
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Figure 8. The schematic of the 3-bay 24-story steel frame.
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The results of the considered algorithms are provided in Table 4. According to this Table,
IPSO-SRM and SingPSO-SRM found the optimum result same as the basic PSO-SRM.
However, in terms of the statistical result for the 30 independent runs, IPSO-SRM and
SingPSO-SRM acquired better results than PSO-SRM. Convergence history for the best and
average run of the PSO-SRM and chaotic variants of it is provided in Figures 9 and 10.

Table 4. Comparison results of the chaotic variants of PSO-SRM in the 3-bay 24-story steel

frame
E'ﬁ;“e PSO-  ChPSO- CiPSO-  IPSO-  LPSO-  PiPSO-  SinePSO  SingPSO  SinuPSO  TPSO-
oy SRM SRM SRM SRM SRM SRM  -SRM  -SRM  -SRM  SRM
| W5 Wiixls  WIAxI5 WIdxls WIAxI4 WIdxls WIAxI5 Widxls WIAx13 Widxid
9 9 9 9 5 9 9 9 2 5
W14x13  WI4x10 WI4x13 WI4x13 WIdx14 Wi4x12 WI14x13  W14x10 W14x13
2 2 9 2 2 5 0 2 9 W14x99 2

. w1gx10 WiAxSS  W14xG0 w1gx10 w1gx10 w1gx10 WLAxSS  WI14xE0 ngxm w1z(1)x12
4 WIAX74  WI14x82 WI4x74 WI4x74  WI4x74 W14x74 WI4x74 W14x82 WI14x90 WI14x74
5 W14x82 WI4x74 WI14x82 WI4x68 WI4x61 WI14x68 W14x61 WI14x74 W1dx74  WI14x61
6 WI4x48 WI4x53 W14x38 WI14x38 W14x43 WI14x43 WI14x43 WI14x43 WI14x38  W14x43
7 WI4x30 WI4x34 WI14x48 W14x38 W14x38 W14x34 WI14x38 WI14x38 WI14x34  W1dx34
8 WI1dx22 WI4x22 WI14x22 WI4x22 WI14x22 Wi4x22 W14x22 Wi4x22 W1dx22  Wi14x22
9 WI14x90 WI4x90 WI14x90 WI4x90 WI14x99 WI14x99 W14x90 WI4x90 W14x99  W14x99
10 WI14x99 w1gx10 W14x99  WI14x99  W14x99 w1gx10 W14x99 w1gx10 Wl‘(‘)"lz W14x99
11 WI4x90 WI14x99 WI4x99 WI14x90 WI4x00 WI14x99 WI4x99 WI14x99 WI4x99  W14x90
12 W14x00 WI14x90 WI14x90 WI14x90 WI14x90 WI14x99 WI14x90 WI4x90 W14x90 W14x90
13 WI4x61 W14x68 WI4x61 W14x68 WI4x74 W14x74 WI14x74 W14x68 WI14x74  W14x74
14 WI4x53 W14x53 WI4x61 WI4x61 WI4x61 WI4x61 WI4x61 WI14x61 WI4x68  W1dx61
15 W14x34 W14x34 W14x26 W14x30 WI14x30 WI14x34 WI14x30 WI14x30 W14x34 W14x34
16 WI4x22 W14x22 WI4x22 WI14x22 WI4x22 WI1dx22 WI4x22 W1dx22 WI14x22  W14x22
17 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90  W30x90
18 Wex15  W6x15  W6x15  Wex15  W6x15  W8x18  W6x15  Wex15  W6x15  W8x18
19 W24x55 W24x55 W24x55 W24x55 W24x55 W14x48 W24x55 W24x55 W24x55  W24x55
20 W6x85 W6x85 W6xB5 W6x85 W6x85 W6x85 W6x85 W6x85 W6x85  WEx85

Best 201402.  201546. 201906.  201402.  201906.  201846.  201583.  201402.  202050.  201906.

(Ib) 05 04 03 04 05 02 04 04 03 04

Worst ~ 207372.  207793.  225029.  206886.  209981.  216229. 222941, 207158,  215175.  210197.
(Ib) 11 50 82 01 93 13 79 12 79 93

Mean  203400. 203507.  205918.  203406.  204019.  204760. 204456,  203259.  204462. 204325
(Ib) 11 01 02 27 56 95 12 69 09 57
SD

1539.31  1512.02  4501.81 132298 214371  2891.80 408543 124253  2965.53  2160.70
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Figure 9. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the
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5. CONCLUSION

The chaotic variants of the particle swarm optimization-statistical regeneration mechanism
(PSO-SRM) are presented in this paper. In these methods, chaotic maps are utilized to define
the solution generation method. Nine chaotic maps, including the Chebyshev, Circle,
Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent, are applied in this study.
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The performance of the chaotic variants of the PSO-SRM is tested in the three steel frame
design problems. In the first example, the chaotic methods can find optimum results like the
PSO-SRM. However, the statistical results of the chaotic algorithms are better than PSO-
SRM. SinePSO-SRM is acquired as the optimum solution in the second example, which is
better than other chaotic methods. In addition, the statistical results of the ChPSO-SRM are
better than other methods. In the last example, IPSO-SRM and SingPSO-SRM can find
better results than other chaotic algorithms. This result shows that the chaotic maps perfectly
improve the performance of the PSO-SRM algorithms.
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