دوره 2، شماره 3 - ( 4-1391 )                   جلد 2 شماره 3 صفحات 368-357 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi M, Barghi E. ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS. IJOCE 2012; 2 (3) :357-368
URL: http://ijoce.iust.ac.ir/article-1-96-fa.html
ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS. عنوان نشریه. 1391; 2 (3) :357-368

URL: http://ijoce.iust.ac.ir/article-1-96-fa.html


چکیده:   (23397 مشاهده)
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavior of MR dampers. The Modified Bouc-Wen model is an appropriate model that has an acceptable accuracy in calculating the generated force of dampers compared to others. In this model displacement and voltage of a MR damper are known while the force generated by MR damper is considered as the unknown. Because of highly nonlinear characteristics of modified bouc-wen model determination of inverse dynamic behavior of MR dampers are generally done using ANNs and ANFIS. Since the ANNs and ANFIS have different mechanisms for emulating desired functions, their responses may be different. In this research the performance of a Back Propagation Neural Network (BPNN), Radial Basis Functions Neural Network (RBFNN) and ANFIS in estimating the inverse dynamic behavior of MR dampers are compared. The results emphasize on the advancement of ANFIS to the other methods studied in estimation of inverse dynamic behavior of MR dampers.
متن کامل [PDF 312 kb]   (6677 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1391/5/13 | انتشار: 1391/4/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb