Showing 3 results for Goudarzi
M. H. Talebpour, Y. Goudarzi, A. R. Fathalian,
Volume 12, Issue 4 (8-2022)
Abstract
In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter variations were calculated by solving an unconstrained nonlinear optimization problem. The objective function in the optimization problem was proposed based on the Multi-Degree-of-Freedom (MDOF) equations of motion as well as the dynamic characteristics of the studied structure. Only the first natural frequency of the damaged structure was used in the proposed updating process, and only one vibration mode was used in the updating problem and damage identification procedure. In addition, as elimination of high-order terms in the proposed formula introduced errors in the final response, the variations of natural frequency and vibration mode for higher-order terms were included in the free vibration equation of the proposed objective function. The Colliding Bodies Optimization (CBO) algorithm was used to solve the optimization problem. The performance of the proposed method was evaluated using the numerical examples, where different conditions were applied to the studied structures. The results of the present study showed that, the proposed method and formulation were capable of efficiently updating the dynamic parameters of the structure as well as identifying the location and severity of the damage using only the first natural frequency of the structure.
M.h. Talebpour, S.m.a. Razavizade Mashizi, A. Goudarzi,
Volume 14, Issue 1 (1-2024)
Abstract
This paper proposes a method for structural damage detection through the sensitivity analysis of modal shapes in the calculation of modal strain energy (MSE). For this purpose, sensitivity equations were solved to determine the strain energy based on dynamic data (i.e., modal shapes). An objective function was then presented through the sensitivity-based MSE to detect structural damage. Due to the nonlinearity of sensitivity equations, the objective function of the proposed formulation can be minimized through the shuffled shepherd optimization algorithm (SSOA). The first few modes were employed for damage detection in solving the inverse problem. The proposed formulation was evaluated in a few numerical examples under different conditions. The numerical results indicated that the proposed formulation was efficient and effective in solving the inverse problem of damage detection. The proposed method not only minimized sensitivity to measurement errors but also effectively identified the location and severity of structural damage.
M.h. Talebpour , S.m.a Razavizade Mashizi, Y. Goudarzi ,
Volume 15, Issue 1 (1-2025)
Abstract
The optimization process of space structures considering the nonlinear material behavior requires significant computational efforts due to the large number of design variables and the complexities of nonlinear structural analysis. Accordingly, the Force Analogy Method (FAM) serves as an efficient tool to reduce computational workload and enhance optimization speed. In this study, the weight optimization of space structures in the inelastic region under seismic loading is carried out using the Shuffled Shepherd Optimization Algorithm (SSOA), with the nonlinear structural analysis based on the FAM. To do this, the FAM formulation for axially loaded members of space structures under seismic forces is presented. Subsequently, weight optimization is performed on two double-layer space structures: a flat double-layer structure with 200 members and a barrel vault structure with 729 members under the Kobe earthquake record. Based on the results, the optimized design using the inelastic behavior showed that the FAM provided accurate results when compared to the precise nonlinear structural analysis. The optimized design based on the FAM is considered acceptable, and the computational time for the optimization process has been significantly reduced.