F. Biabani, A. Razzazi, S. Shojaee, S. Hamzehei-Javaran,
Volume 12, Issue 3 (4-2022)
Abstract
Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving structure-related problems is presented. The main purpose of this paper is to present an algorithm that addresses the major drawbacks of commonly-used algorithms including the Grey Wolf Optimization Algorithm (GWO), the Gravitational Search Algorithm (GSA), and the Particle Swarm Optimization Algorithm (PSO), and at the same time benefits from a high convergence rate. Also, another advantage of the proposed CGPGC algorithm is its considerable flexibility to solve a variety of optimization problems. To this end, we were inspired by the GSA law of gravity, the GWO's top three search factors, the PSO algorithm in calculating speed, and the cellular machine theory in the realm of population segmentation. The use of cellular neighborhood reduces the likelihood of getting caught in the local optimal trap and increases the rate of convergence to the global optimal point. Achieving reasonable results in mathematical functions (CEC 2005) and spatial structures (with a large number of variables) in comparison with those from GWO, GSA, PSO, and some other common heuristic algorithms shows an enhancement in the performance of the introduced method compared to the other ones.
F. Biabani, A. A. Dehghani, S. Shojaee, S. Hamzehei-Javaran,
Volume 14, Issue 3 (6-2024)
Abstract
Optimization has become increasingly significant and applicable in resolving numerous engineering challenges, particularly in the structural engineering field. As computer science has advanced, various population-based optimization algorithms have been developed to address these challenges. These methods are favored by most researchers because of the difficulty of calculations in classical optimization methods and achieving ideal solutions in a shorter time in metaheuristic technique methods. Recently, there has been a growing interest in optimizing truss structures. This interest stems from the widespread utilization of truss structures, which are known for their uncomplicated design and quick analysis process. In this paper, the weight of the truss, the cross-sectional area of the members as discrete variables, and the coordinates of the truss nodes as continuous variables are optimized using the HGPG algorithm, which is a combination of three metaheuristic algorithms, including the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf Optimization (GWO). The presented formulation aims to improve the weaknesses of these methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses were utilized to show the efficiency of the HGPG method, so the weight of these examples was optimized while their constraints such as stress limitations, displacement constraints, and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and continuous modes to optimize the size and geometric configuration of truss structures, allowing for comprehensive structural optimization. The numerical results show the suitable performance of this process.