Search published articles


Showing 2 results for Heidari

A. Heidari, J. Raeisi , R. Kamgar,
Volume 8, Issue 1 (1-2018)
Abstract

Cumulative absolute velocity (CAV), Arias intensity (AI), and characteristic intensity (CI) are measurable characteristics to show collapse potential of structures, evaluation of earth movement magnitude, and detection of structural failure in an earthquake. In this paper, parameters which describe three characteristics of ground motion have been investigated by using wavelet transforms (WT). In fact, in this paper, a series of twenty eight earthquake records (ER) are decomposed to a pre-defined certain levels by the use of WT. The high and low frequencies are separated. Since higher frequencies do not have any significant effect on the ER, then the low frequencies of ER have been used. For this purpose, each ER is decomposed into 5 levels. Then, for low frequencies of ER, the CAV, AI, and CI are calculated for each level and the results are compared with the values of CAV, AI, and CI which have been computed for the original ER. The results indicate that the value of error is less than 1 percent in the first and second level and this value is less than 10 percent for the third level. In addition, this value is more than 15 percent for the fourth and fifth levels. If the acceptable value for error is considered to be less than 10 percent, it is recommended to use the third level of decomposition for determining these parameters, since the value of error is low and also, the required time is reduced.


S. Shabankhah, A. Heidari, R. Kamgar,
Volume 11, Issue 4 (11-2021)
Abstract

Seismic analysis of structures is a process for estimating the response of structures subjected to earthquakes. For this purpose, the earthquake ­is analyzed using the wavelet theory. In this paper, the primary signal of the earthquake is decomposed through a discrete wavelet transform, and their corresponding response spectrum is obtained. Then, the percentage difference between the decomposed signals and the main one is computed. Therefore, for different earthquakes, a comparison between the response spectrum is studied in various types of dams. The acceleration, velocity, and displacement responses are computed and compared to achieve an appropriate level of decomposition, which can be used instead of the primary signal. Therefore, the decomposition process leads to attaining acceptable accuracy as well as low computational cost. The investigation revealed that the acceleration, velocity, and displacement responses spectrum are suitable up to the third level of decomposition for the small and medium dams, whereas for large dams, up to the fifth level of decomposition is suitable.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb