Showing 4 results for Karimi
M. Rezaiee-Pajand, A. Rezaiee-Pajand, A. Karimipour, J. Mohebbi Najm Abad,
Volume 10, Issue 3 (6-2020)
Abstract
Reducing waste material plays an essential role for engineers in the current world. Nowadays, recycled materials are going to be used in order to manufacture concrete beams. Previous studies concluded that the currently proposed formulas to predict the flexural and shear behavior of the reinforced concrete beams were not appropriate for those manufactured by recycled materials. This study aims to employ the Particle Swarm Optimization Algorithm to suggest the flexural and shear performance of recycled material reinforced concrete beams. For this purpose, the previous experimental outcomes are utilized, and new equations are established to anticipate both flexural and shear behavior of the recycled material concrete beams. Consequently, all findings are compared with those achieved experimentally. The attained significances of this study show that the proposed formulas have high accuracy for the experimental data.
I. Karimi, M. S. Masoudi,
Volume 14, Issue 1 (1-2024)
Abstract
The main part of finite element analysis via the force method involves the formation of a suitable null basis for the equilibrium matrix. For an optimal analysis, the chosen null basis matrices should exhibit sparsity and banding, aligning with the characteristics of sparse, banded, and well-conditioned flexibility matrices. In this paper, an effective method is developed for the formation of null bases of finite element models (FEMs) consisting of shell elements. This leads to highly sparse and banded flexibility matrices. This is achieved by associating specific graphs to the FEM and choosing suitable subgraphs to generate the self-equilibrating systems (SESs) on these subgraphs. The effectiveness of the present method is showcased through two examples.
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
A.h. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 2 (2-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.