Showing 113 results for Design
E. Pouriyanezhad, H. Rahami, S. M. Mirhosseini,
Volume 10, Issue 2 (4-2020)
Abstract
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calculation and new population generation in these two methods are completely different. At each stage of the ECM algorithm, successful distributions are identified and the covariance matrix of the successful distributions is formed. Subsequently, by the help of the principal component analysis (PCA), the scattering directions of these distributions will be achieved. The new population is generated by the combination of weighted directions that have a successful distribution and using random normal distribution. In the discrete ECM method, in case of succeeding in a certain number of cycles the step size is increased, otherwise the step size is reduced. In order to determine the efficiency of this method, three benchmark steel frames were optimized due to the resistance and displacement criteria specifications of the AISC-LRFD, and the results were compared to other optimization methods. Considerable outputs of this algorithm show that this method can handle the complex problems of optimizing discrete steel frames.
M. Shahrouzi,
Volume 10, Issue 3 (6-2020)
Abstract
Meta-heuristics have received increasing attention in recent years. The present article introduces a novel method in such a class that distinguishes a number of artificial search agents called players within two teams. At each iteration, the active player concerns some other players in both teams to construct its special movements and to get more score. At the end of some iterations (like quarters of a sports game) the teams switch their places for fair play. The algorithm is developed to solve a general purpose optimization problem; however, in this article its application is illustrated on structural sizing design. Switching Teams Algorithm is presented as a parameter-less population-based algorithm utilizing just two control parameters. The proposed method can recover diversity in a novel manner compared to other meta-heuristics in order to capture global optima.
A. Nabati, S. Gholizadeh,
Volume 10, Issue 4 (10-2020)
Abstract
The present work is aimed at assessing the impact of strong column-weak beam (SCWB) criterion on seismic performance of optimally designed steel moment frames. To this end, different SCWB ratios are considered for steel special moment resisting frame (SMRF) structures and performance-based design optimization process is implemented with the aid of an efficient metaheuristic. The seismic collapse performance of the optimally designed SMRFs is assessed by performing incremental dynamic analysis (IDA) and determining their adjusted collapse margin ratios. Three design examples of 5-, 10-, and 15-story SMRFs are presented to illustrate the efficiency of the proposed methodology.
M. Danesh, A. Iraji,
Volume 10, Issue 4 (10-2020)
Abstract
The efficiency of braced structures depends significantly on structure response under seismic loads. The main design challenge for these type of structures is to select shape, number of spans, and type of connections appropriately. Therefore, introducing an optimized and cost-effective design including a certain level of safety and performance against natural hazards seems to be an inevitable necessity. The present work introduces a performance-based design for braced steel structures as well as an optimized arrangement of braces and connection types via using finite difference algorithm. The results show that the latter two factors are very important and necessary to achieve an optimized design for braced steel structures.
F. Rahimi,
Volume 10, Issue 4 (10-2020)
Abstract
By incorporating structural engineering, animal husbandry, and veterinary, this interdisciplinary research accomplishes the following two main objectives: 1) design and optimization to reduce the weight of the steel structure skeleton of the stable with ECBO & CBO algorithms; 2) improving the performance of the natural ventilation system in the stable with some changes in the structure's geometric design.
In this study, each algorithm's performance will be investigated in the course of accomplishing the aforementioned objective. Furthermore, using stress ratios by algorithms in each member will be studied. Finally, using the algorithms, a stable steel structure with lower weight is designed.
In this paper, through changing and improving the structure's geometric design, a structure more compatible with the natural ventilation system's requirements is designed. These changes are as follows: 1) design of a taller stable structure; 2) larger design of the air inlets in the joint line between the upper part of the side walls and the lower part of the pitched roof.
A. Kaveh, N. Khodadadi, S. Talatahari,
Volume 11, Issue 1 (1-2021)
Abstract
In this article, an Advanced Charged System Search (ACSS) algorithm is applied for the optimum design of steel structures. ACSS uses the idea of Opposition-based Learning and Levy flight to enhance the optimization abilities of the standard CSS. It also utilizes the information of the position of each charged particle in the subsequent search process to increase the convergence speed. The objective function is to find a minimum weight by choosing suitable sections subjected to strength and displacement requirements specified by the American Institute of Steel Construction (AISC) standard subject to the loads defined by Load Resistance Factor Design (LRFD). To show the performance of the ACSS,
four steel structures with different number of elements are optimized. The results, efficiency, and accuracy of the ACSS algorithm are compared to other meta-heuristic algorithms. The results show the superiority of the ACSS compared to the other considered algorithms.
H. Fattahi,
Volume 11, Issue 1 (1-2021)
Abstract
Mechanical excavators are widely utilized in civil/mining engineering projects. There are several types of mechanical excavators, such as an impact hammer, tunnel boring machine (TBM) and roadheader. Among these, roadheaders have some advantages (such as, initial investment cost, elimination of blast vibration, minimal ground disturbances and reduced ventilation requirements). The poor performance estimation of the roadheaders can lead to costly contractual claims. Relevance vector regression (RVR) is one of the robust artificial intelligence algorithms proved to be very successful in recognition of relationships between input and output parameters. The aim of this paper is to show the application of RVR in prediction of roadheader performance. The estimation abilities offered using RVR was presented by using field data of achieved from tunnels for Istanbul’s sewerage system, Turkey. In this model, Schmidt hammer rebound values and rock quality designation (RQD) were utilized as the input parameters, while net cutting rates was the output parameter. As statistical indices, coefficient of determination (R2) and mean square error (MSE) were used to evaluate the efficiency of the RVR model. According to the obtained results, it was observed that RVR model can effectively be implemented for roadheader performance prediction.
A. Milany, S. Gholizadeh,
Volume 11, Issue 2 (5-2021)
Abstract
The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient metaheuristic algorithms, namely center of mass optimization and improved fireworks, are used to implement the optimization task. During the optimization process, nonlinear structural response-history analysis is carried out to evaluate the structural response. Two illustrative design examples of 6- and 12-story steel MRFs are presented, and it is observed that the performance-based design optimization considering soil-structure interaction decreases the structural weight and increases nonlinear structural response in comparison to rigid-based models. Therefore, in order to obtain more realistic optimal designs, soil-structure interaction should be included in the performance-based design optimization process of steel MRFs.
S. Sarjamei, M. S. Massoudi, M. Esfandi Sarafraz,
Volume 11, Issue 2 (5-2021)
Abstract
H. Safaeifar, M. Sheikhi Azqandi,
Volume 11, Issue 3 (8-2021)
Abstract
The impact damper is a passive method for controlling vibrations of dynamic systems. It is designed by placing one or several masses in a container, which is installed on the structure. Damping performance is affected by many parameters, such as the mass ratio of the primary structure, size, number, and material of the particles, friction and restitution coefficients of the particles and gap distance. Impact damper is effective, economical, and practical and its functionality can be further enhanced by an optimal design. In this paper, first, the mathematical modeling of a rigid impact damper used in free vibration reduction of a single degree of freedom (SDOF) system is performed. The results on this step are validated with those results of previous studies, and a good agreement is achieved. Next, the robust hybrid optimization method that is called Imperialist Competitive Ant Colony Optimization (ICACO) is introduced. After that, the damper function is optimized using ICACO, and the optimum values of the effective parameters for maximizing damping effectiveness are obtained. Comparing the results of the optimized and the basic designs shows that the optimization method is robust and the optimal results are practical. The optimum design of damper parameters using ICACO method can damp more than %94 of the system’s initial energy in a short time.
H. Veladi, R. Beig Zali,
Volume 11, Issue 3 (8-2021)
Abstract
The optimal design of dome structures is a challenging task and therefore the computational performance of the currently available techniques needs improvement. This paper presents a combined algorithm, that is supported by the mixture of Charged System Search (CSS) and Teaching-Learning-based optimization (TLBO). Since the CSS algorithm features a strong exploration and may explore all unknown locations within the search space, it is an appropriate complement to enhance the optimization process by solving the weaknesses with using another optimization algorithm’s strong points. To enhance the exploitation ability of this algorithm, by adding two parts of Teachers phase and Student phase of TLBO algorithm to CSS, a method is obtained that is more efficient and faster than standard versions of these algorithms. In this paper, standard optimization methods and new hybrid method are tested on three kinds of dome structures, and the results show that the new algorithm is more efficient in comparison to their standard versions.
M. Danesh, A. Iraji , S. Jaafari,
Volume 11, Issue 4 (11-2021)
Abstract
The main object in optimizing reinforced concrete frames based on the performance is decreasing the initial cost or life cycle cost or total cost. The optimization performed here is with the requirement of satisfying story drifts and rotation of plastic hinges. However, this optimization may decrease seismic strength of the structure. Newton Meta-Heuristic Algorithm (NMA) was used to optimize three-, six-, and twelve-story reinforced concrete frames based on the performance and utilizing the cost objective function. The seismic parameters of the optimized frames were calculated. The results showed that the inter-story drifts at the performance level of LS controls the design. According to the results, the objective function for construction cost is not useful for the optimization of the reinforced concrete frames. Because the amounts of the over strength, the absorbed plastic energy, and the ductility factor for the optimized frames are low using the objective function for the construction cost.
M. Shahrouzi, A. Azizi,
Volume 12, Issue 1 (1-2022)
Abstract
The present work reveals a problem formulation to minimize material consumption and improve efficiency of diagrids to resist equivalent wind loading. The integrated formulation includes not only sizing of structural members but also variation in geometry and topology of such a system. Particular encoding technique is offered to handle practical variation of diagrid modules. A variant of Pseudo-random Directional Search is utilized to solve this problem treating a number of three dimensional structural models. Several issues are investigated including the effect of variation in the building height, its aspect ratio and fixing or releasing diagrid angles. Consequently, especial trend of variation in diagrid angle is observed with superior structural responses with respect to sizing designs of the fixed-angle modules.
M. Ghasemiazar, S. Gholizadeh,
Volume 12, Issue 1 (1-2022)
Abstract
This study is devoted to seismic collapse safety analysis of performance based optimally seismic designed steel chevron braced frame structures. An efficient meta-heuristic algorithm namely, center of mass optimization is utilized to achieve the seismic optimization process. The seismic collapse performance of the optimally designed steel chevron braced frames is assessed by performing incremental dynamic analysis and determining their adjusted collapse margin ratios. Two design examples of 5-, and 10-story chevron braced frames are illustrated. The numerical results demonstrate that all the performance-based optimal designs are of acceptable seismic collapse safety.
M. Shahrouzi, R. Jafari,
Volume 12, Issue 2 (4-2022)
Abstract
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number of investigators as a powerful meta-heuristic algorithm. Several cases of penalty handling techniques are offered and studied using either maximum or summation of constraint violations as well as their combinations. Consequently, the most successive sequence, is identified for the treated continuous and discrete structural examples. Such a dynamic constraint handling is an affordable generalized solution for structural sizing design by iterative population-based algorithms.
R. Babaei Semriomi, A. Keyhani,
Volume 12, Issue 2 (4-2022)
Abstract
This paper introduces a reliability-based multi-objective design method for spatial truss structures. A multi-objective optimization problem has been defined considering three conflicting objective functions including truss weight, nodal deflection, and failure probability of the entire truss structure with design variables of cross sectional area of the truss members. The failure probability of the entire truss system has been determined considering the truss structure as a series system. To this end, the uncertainties of the applied load and the resistance of the truss members have been accounted by generating a set of 50 random numbers. The limitations of members' allowable have been defined as constraints. To explain the methodology, a 25-bar benchmark spatial truss has been considered as the case study structure and has been optimally designed using the game theory concept and genetic algorithm (GA). The results show effectiveness and simplicity of the proposed method which can provide Pareto optimal solution. These optimal solutions can provide both safety and reliability for the truss structure.
Sh. Bijari, M. Sheikhi Azqandi,
Volume 12, Issue 2 (4-2022)
Abstract
In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under American Concrete Institute’s ACI 318-05 Standard. So, the numerical examples considered in this study have a large number of design variables and design constraints that make it complicated to converge the global optimal design. The ITEO has an excellent balance between the two phases of exploration and extraction and it has a high ability to find the optimal point of such problems. The comparison results between the ITEO and some other metaheuristic algorithms show the proposed method is competitive compared to others, and in some cases, superior to some other available metaheuristic techniques in terms of the faster convergence rate, performance, robustness of finding an optimal design solution, and needs a smaller number of function evaluations for designing considered constrained engineering problems.
B. Ganjavi, M. Bararnia,
Volume 12, Issue 3 (4-2022)
Abstract
In present study, the effects of optimization on seismic energy spectra including input energy, damping energy and yielding hysteretic energy are parametrically discussed. To this end, 12 generic steel moment-resisting frames having fundamental periods ranging from 0.3 to 3s are optimized by using uniform damage and deformation approaches subjected to a series of 40 non-pule strong ground motions. In order to obtain the optimum distribution of structural properties, an iterative optimization procedure has been adopted. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure. This process is continued until a state of uniform damage is achieved. Then, the maximum energy demand parameters are computed for different structures designed by optimum load pattern as well as code-based pattern, and the mean energy spectra, energy-based reduction factor and the dispersion of the results are compared and discussed. Results indicate that optimum seismic load pattern can significantly affect the energy demands spectra especially in inelastic range of response. In addition, using energy-based reduction factors of optimum structures in short-period and long-period regions will result in respectively overestimation and underestimation of the required input energy demands for code-based structures, reflecting the difference dose exists in reality between the conventional forced-based methodology and energy-based seismic design approach that can more realistically incorporate the frequency content and duration of earthquake ground motions.
R. Bagherzadeh, A. Riahi Nouri, M. S. Massoudi, M. Ghazi , F. Haddad Sharg,
Volume 12, Issue 3 (4-2022)
Abstract
The main purpose of this paper was to use a combination of Energy-based design method and whale algorithm (WOA), hereinafter referred to as E-WOA, to optimize steel moment frames and improve the seismic performance. In E-WOA, by properly estimating the seismic input energy and determining the optimal mechanism for the structure, steel frames are designed based on the energy balance method; according to the results, in a suitable search space, optimization is performed using the WOA algorithm. The objective function of the WOA algorithm, in addition to the frame weight, is meant to improve the behavior of the structure based on the performance level criteria of the ASCE41-17 standard and the uniformity of the drift distribution at the frame height. The results show that the initial design of the Energy method reduces the computational volume of the WOA algorithm to achieve the optimal solution and the plastic hinge pattern in frame is more favorable in the E-WOA method than in the design done by the Energy method.
P. Hosseini, A. Kaveh, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 3 (4-2022)
Abstract
Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization technique named Enhanced Vibrating Particle System (EVPS). Finite element analyses of structures and optimization process are coded in MATLAB. Large-scale dome truss of 600-bar, 1180-bar and 1410-bar are investigated in this paper and are compared with the previous studies. Also, a comparison is made between the reliability indexes of Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based Design Optimization (RBDO).