Search published articles


Showing 484 results for Type of Study: Research

V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract

The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
 
S. S. Shahebrahimi, A. Lork, D. Sedaghat Shayegan, A. A. Kardoust,
Volume 14, Issue 1 (1-2024)
Abstract

One of the important factors in the efficiency of construction operations is the proper replacement construction projects of the construction site layout planning (CSLP). That this would not be possible without oversight of the factors affecting it. Therefore, the study of factors affecting the replacement of construction site layout is considered vital in projects. Different factors are involved in the replacement of CSLP, which examine the economic dimension and the effects of changing costs and time during work. Due to the complexity of the subject, it is solved using hyper-innovative algorithms. This research is a linear programming model for optimizing the layout of equipment for Launcher/Receiver (L/R) stations. Due to the complexity of the problem, the invasive weed algorithm was used to achieve an optimal response. The goal is to minimize the total costs associated with transportation, relocation and relocation, and changes during implementation. The results of the calculations and output of the algorithm showed the variation of the answer in the optimal layout of the CSLP, which was obtained at the lowest distance and the most optimal mode. The results were presented in a similar scenario in the projects.
 
M.h. Talebpour, S.m.a. Razavizade Mashizi, A. Goudarzi,
Volume 14, Issue 1 (1-2024)
Abstract

This paper proposes a method for structural damage detection through the sensitivity analysis of modal shapes in the calculation of modal strain energy (MSE). For this purpose, sensitivity equations were solved to determine the strain energy based on dynamic data (i.e., modal shapes). An objective function was then presented through the sensitivity-based MSE to detect structural damage. Due to the nonlinearity of sensitivity equations, the objective function of the proposed formulation can be minimized through the shuffled shepherd optimization algorithm (SSOA). The first few modes were employed for damage detection in solving the inverse problem. The proposed formulation was evaluated in a few numerical examples under different conditions. The numerical results indicated that the proposed formulation was efficient and effective in solving the inverse problem of damage detection. The proposed method not only minimized sensitivity to measurement errors but also effectively identified the location and severity of structural damage.
 
I. Karimi, M. S. Masoudi,
Volume 14, Issue 1 (1-2024)
Abstract

The main part of finite element analysis via the force method involves the formation of a suitable null basis for the equilibrium matrix. For an optimal analysis, the chosen null basis matrices should exhibit sparsity and banding, aligning with the characteristics of sparse, banded, and well-conditioned flexibility matrices. In this paper, an effective method is developed for the formation of null bases of finite element models (FEMs) consisting of shell elements. This leads to highly sparse and banded flexibility matrices. This is achieved by associating specific graphs to the FEM and choosing suitable subgraphs to generate the self-equilibrating systems (SESs) on these subgraphs. The effectiveness of the present method is showcased through two examples.
 
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract

Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
 
M. Shahrouzi,
Volume 14, Issue 2 (2-2024)
Abstract

During the process of continuum topology optimization some pattern discontinuities may arise. It is an important challenge to overcome such irregularities in order to achieve or interpret the true optimal layout. The present work offers an efficient algorithm based on graph theoretical approach regarding density priorities. The developed method can recognize and handle solid continuous regions in a pre-optimized media. An illustrative example shows how the proposed priority guided trees can successfully distinguish the most crucial parts of the continuum during topology optimization.
 
S. Gholizadeh, C. Gheyratmand,
Volume 14, Issue 2 (2-2024)
Abstract

The main objective of this paper is to optimize the size and layout of planar truss structures simultaneously. To deal with this challenging type of truss optimization problem, the center of mass optimization (CMO) metaheuristic algorithm is utilized, and an extensive parametric study is conducted to find the best setting of internal parameters of the algorithm. The CMO metaheuristic is based on the physical concept of the center of mass in space. The effectiveness of the CMO metaheuristic is demonstrated through the presentation of three benchmark truss layout optimization problems. The numerical results indicate that the CMO is competitive with other metaheuristics and, in some cases, outperforms them.
 
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract

Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
 
Pooya Zakian, Pegah Zakian,
Volume 14, Issue 2 (2-2024)
Abstract

In this study, the support vector machine and Monte Carlo simulation are applied to predict natural frequencies of truss structures with uncertainties. Material and geometrical properties (e.g., elasticity modulus and cross-section area) of the structure are assumed to be random variables. Thus, the effects of multiple random variables on natural frequencies are investigated. Monte Carlo simulation is used for probabilistic eigenvalue analysis of the structure. In order to reduce the computational cost of Monte Carlo simulation, a support vector machine model is trained to predict the required natural frequencies of the structure computed in the simulations. The provided examples demonstrate the computational efficiency and accuracy of the proposed method compared to the direct Monte Carlo simulation in the computation of the natural frequencies for trusses with random parameters.
 
P. Hosseini, A. Kaveh, A. Naghian, A. Abedi,
Volume 14, Issue 2 (2-2024)
Abstract

The global population growth and the subsequent surge in housing demand have inevitably led to an increase in the demand for concrete, and consequently, cement. This has posed environmental challenges, as cement factories are significant contributors to carbon dioxide emissions. One promising solution is to incorporate pozzolanic materials into concrete production. This study investigates the effects of using travertine sludge as a partial substitute for cement. Seven different mix designs, along with a control mix, were created and compared. The primary variable was the ratio of travertine sludge to cement weight, considered in intervals of 10%, 15%, 20%, 25%, 30%, 35%, and 40% of the cement's weight. Various tests were conducted, including compressive strength and flexural strength at ages of 7, 28, and 90 days, as well as a permeability test at 28 days. The findings revealed interesting patterns. At the 7-day mark, as the percentage of travertine sludge increased, there was a decrease in compressive strength. However, by the 28-day mark, the concrete displayed a varied behavior: using up to 30% travertine sludge by weight reduced the strength, but exceeding 30% resulted in increased strength. At the 90-day mark, an overall increase in strength was observed with the rise in travertine sludge percentage. Such pozzolanic effects on compressive strength were somewhat predictable. Additionally, based on the flexural strength tests, travertine sludge can be deemed a viable substitute for a certain percentage of cement by weight. This research underscores the potential of sustainable alternatives in the construction industry, promoting both professional development and personal branding for those engaged in eco-friendly practices.
 
A. Ghaderi, M. Nouri, L. Hosseinzadeh, A. Ferdousi,
Volume 14, Issue 2 (2-2024)
Abstract

Seismic vibration control refers to a range of technical methods designed to reduce the effects of earthquakes on building structures and many other engineering systems. Most of the recently developed methods in this area have been investigated in vibration suppression of buildings structures each of which have advantages and disadvantages in dealing with complex structural systems and destructive earthquakes. This study aims to implement two of the well-known passive control systems as Base Isolation (BI) and Mass Damper (MD) control as a hybrid control scheme in order to reduce the seismic vibration of tall tubular buildings in dealing with different types of earthquakes. For this purpose, a 50-story tall building is considered with tubular structural system while the hybrid BI-MD control system ins implemented in the building for vibration control purposes. Since the parameter tuning process is one of the key aspects of the passive control systems, a metaheuristic-based parameter optimization process is conducted for this purpose in which a new upgraded version of the standard Gazelle Optimization Algorithm (GOA) is proposed as UGOA while the Chaos Theory (CT) is used instead of random movements in the main search loop of the UGOA in order to enhance the overall performance of the standard algorithm. The results show that the upgraded algorithm is capable of conducting better search in dealing with the optimal hybrid control of structural systems.
 
Z.h.f. Jafar, S. Gholizadeh,
Volume 14, Issue 2 (2-2024)
Abstract

The main objective of this study is to predict the maximum inter-story drift ratios of steel moment-resisting frame (MRF) structures at different seismic performance levels using feed-forward back-propagation (FFBP) neural network models. FFBP neural network models with varying numbers of hidden layer neurons (5, 10, 15, 20, and 50) were trained to predict the maximum inter-story drift ratios of 5- and 10-story steel MRF structures. The numerical simulations indicate that FFBP neural network models with ten hidden layer neurons better predict the inter-story drift ratios at seismic performance levels for both 5- and 10-story steel MRFs compared to other neural network models.
A.h. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 2 (2-2024)
Abstract

Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
S. L. Seyedoskouei, Dr. R. Sojoudizadeh, Dr. R. Milanchian, Dr. H. Azizian,
Volume 14, Issue 3 (6-2024)
Abstract

The optimal design of structural systems represents a pivotal challenge, striking a balance between economic efficiency and safety. There has been a great challenge in balancing between the economic issues and safety factors of the structures over the past few decades; however, development of high-speed computing systems enables the experts to deal with higher computational efforts in designing structural systems. Recent advancements in computational methods have significantly improved our ability to address this challenge through sophisticated design schemes. The main purpose of this paper is to develop an intelligent design scheme for truss structures in which an optimization process is implemented into this scheme to help the process reach lower weights for the structures. For this purpose, the Artificial Rabbits Optimization (ARO) algorithm is utilized as one of the recently developed metaheuristic algorithms which mimics the foraging behaviour of the rabbits in nature. In order to reach better solutions, the improved version of this algorithm is proposed as I-ARO in which the well-known random initialization process is substituted by the Diagonal Linear Uniform (DLU) initialization procedure. For numerical investigations, 5 truss structures 10, 25, 52, 72, and 160 elements are considered in which stress and displacement constraints are determined by considering discrete design variables. By conducting 50 optimization runs for each truss structure, it can be concluded that the I-ARO algorithm is capable of reaching better solutions than the standard ARO algorithm which demonstrates the effects of DLU in enhancing this algorithm’s search behaviour.
 
Dr. M. Shahrouzi, A.m. Taghavi,
Volume 14, Issue 3 (6-2024)
Abstract

The sine-cosine algorithm is concerned as a recent meta-heuristic method that takes benefit of orthogonal functions to scale its walking steps through the search space. The idea is utilized here in a different manner to develop a modified sine-cosine algorithm (MSCA). It is based on the controlled perturbation about current solutions by applying a novel combination of sine and cosine functions. The desired transition from exploration to exploitation phases mainly relies on such a term that provides continued fluctuations within a dynamic amplitude. Performance of the proposed algorithm is further evaluated on a set of thirteen test functions with unimodal and multimodal search spaces, as well as on engineering and structural problems in a variety of discrete, continuous and mixed discrete-continuous types. Numerical simulations show that MSCA can find the best literature results for such benchmarks problems. Additional fair comparisons, declare competitive performance of the proposed method with other meta-heuristic algorithms and its enhancement with respect to the standard sine-cosine algorithm.
Dr V.r. Mahdavi, Prof. A. Kaveh,
Volume 14, Issue 3 (6-2024)
Abstract

In order to evaluate the damage state, value, and position of structural members more accurately, a multi-objective optimization (MO) method is utilized that is based on changes in natural frequency. The multi-objective optimization dynamic-based damage detection method is first introduced. Two objective functions for optimization are then introduced in terms of changing the natural frequencies and mode shapes. The multi-objective optimization problem (MOP) is formulated by using the two objective functions. Three considered MO algorithms consist of Colliding Bodies Optimization (MOCBO), Particle Swarm Optimization (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) to achieve the best structural damage detection. The proposed methods are then applied to three planar steel frame structures. Compared to the traditional optimization methods utilizing the single-objective optimization (SO) algorithms, the presented methods provide superior results.
M. Golkar, R. Sheikholeslami,
Volume 14, Issue 3 (6-2024)
Abstract

Spillway design poses a significant challenge in effectively managing the energy within water flow to prevent erosion and destabilization of dam structures. Traditional approaches typically advocate for standard hydraulic jump stilling basins or other energy dissipators at spillway bases yet constructing such basins can be prohibitively large and costly, particularly when extensive excavation is necessary. Consequently, growing interest in cascade hydraulic structures has emerged over recent decades as an alternative for energy dissipation. These structures utilize a series of arranged steps to facilitate water flow, effectively dissipating energy as it traverses the cascade. Commonly deployed in scenarios involving high dams or steep gradients, the stepped configuration ensures efficient aeration and substantial energy dissipation along the structure, thereby reducing the size and cost of required stilling basins. Despite extensive research on hydraulic characteristics using physical and numerical models and established design procedures, construction cost optimization of step cascades remains limited but promising. This paper aims to address this gap by employing two novel gradient-based meta-heuristic optimization techniques to enhance the efficiency and cost-effectiveness of cascade stilling basin designs. Through comparative analyses and evaluations, this study demonstrates the efficacy of these techniques and offers insights for future research and applications in hydraulic structures design optimization.
A.r. Hajizadeh, M. Khatibinia, D. Hamidian,
Volume 14, Issue 3 (6-2024)
Abstract

The contourlet transform as an extension of the wavelet transform in two dimensions uses the multiscale and directional filter banks, and has a more adequate performance in comparison with the classical multi-scale representations. In this study, the efficiency of the contourlet transform is assessed for identifying the damage of plate structures in various conditions. The conditions include single damage and multi–damages with different shapes and severities, the different supports (i.e., boundary conditions), and the higher mode shapes,. For achieving this purpose, the process of the damage detection of plate structures using contourlet transform is implemented in the three steps. In the first step, the first mode shapes of a damaged plate and a reference state as the intact plate are obtained using the finite element method. In the second step, the damage indices are achieved by applying the contourlet transform to the responses of the first mode shapes for the damaged and intact plates. Finally, the location and the approximate shape of the damage are identified by plotting the damage indices. The obtained results indicate that the various conditions influence the performance of the contourlet transform for identifying the location and approximate shape of damages in plate structures.
P. Hosseini, A. Kaveh, A. Naghian, A. Abedi,
Volume 14, Issue 3 (6-2024)
Abstract

This study aimed to develop and optimize artificial stone mix designs incorporating microsilica using artificial neural networks (ANNs) and metaheuristic optimization algorithms. Initially, 10 base mix designs were prepared and tested based on previous experience and literature. The test results were used to train an ANN model. The trained ANN was then optimized using SA-EVPS and EVPS algorithms to maximize 28-day compressive strength, with aggregate gradation as the optimization variable. The optimized mixes were produced and tested experimentally, revealing some discrepancies with the ANN predictions. The ANN was retrained using the original and new experimental data, and the optimization process was repeated iteratively until an acceptable agreement was achieved between predicted and measured strengths. This approach demonstrates the potential of combining ANNs and metaheuristic algorithms to efficiently optimize artificial stone mix designs, reducing the need for extensive physical testing.
F. Biabani, A. A. Dehghani, S. Shojaee, S. Hamzehei-Javaran,
Volume 14, Issue 3 (6-2024)
Abstract

Optimization has become increasingly significant and applicable in resolving numerous engineering challenges, particularly in the structural engineering field. As computer science has advanced, various population-based optimization algorithms have been developed to address these challenges. These methods are favored by most researchers because of the difficulty of calculations in classical optimization methods and achieving ideal solutions in a shorter time in metaheuristic technique methods. Recently, there has been a growing interest in optimizing truss structures. This interest stems from the widespread utilization of truss structures, which are known for their uncomplicated design and quick analysis process. In this paper, the weight of the truss, the cross-sectional area of the members as discrete variables, and the coordinates of the truss nodes as continuous variables are optimized using the HGPG algorithm, which is a combination of three metaheuristic algorithms, including the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf Optimization (GWO). The presented formulation aims to improve the weaknesses of these methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses were utilized to show the efficiency of the HGPG method, so the weight of these examples was optimized while their constraints such as stress limitations, displacement constraints, and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and continuous modes to optimize the size and geometric configuration of truss structures, allowing for comprehensive structural optimization. The numerical results show the suitable performance of this process.

Page 24 from 25     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb