Search published articles


Showing 49 results for Heuristic Algorithm

A. A. Saberi, D. Sedaghat Shayegan,
Volume 11, Issue 4 (11-2021)
Abstract

Optimization has always been a human concern from ancient times to the present day, also in light of advances in computing equipment and systems, optimization techniques have become increasingly important in different applications. The role of metaheuristic algorithms in optimizing and solving engineering problems is expanding every day, optimization has also had many applications in water engineering. Every year, the effects of climate change and the water crisis deepen and worsen in many parts of the world, and existing water management becomes much more vital and critical. One of the main centers for water management and control dams reservoirs. In this paper, applying the CBO metaheuristic algorithm, the results of optimization in the operation of the Haraz dam reservoir in northern Iran, which has previously been done with FA and GA algorithms and standard operation system (SOP), are reviewed and compared. With the implementation of the CBO algorithm, all results and key outputs such as program runtime, annual water shortages, and vulnerabilities are much better than previous calculations, all the results are mentioned in the text of the article, but for example, the annual water shortage has reached about 38% of the FA algorithm, about 25% of the GA algorithm and about 13% of the SOP method. The numerical results demonstrate that the CBO algorithm has merits in solving challenging optimization problems and using this innovative algorithm can be an important starting point in the operation of dam reservoirs around the world.
M. Danesh, A. Iraji , S. Jaafari,
Volume 11, Issue 4 (11-2021)
Abstract

The main object in optimizing reinforced concrete frames based on the performance is decreasing the initial cost or life cycle cost or total cost. The optimization performed here is with the requirement of satisfying story drifts and rotation of plastic hinges. However, this optimization may decrease seismic strength of the structure. Newton Meta-Heuristic Algorithm (NMA) was used to optimize three-, six-, and twelve-story reinforced concrete frames based on the performance and utilizing the cost objective function. The seismic parameters of the optimized frames were calculated. The results showed that the inter-story drifts at the performance level of LS controls the design. According to the results, the objective function for construction cost is not useful for the optimization of the reinforced concrete frames. Because the amounts of the over strength, the absorbed plastic energy, and the ductility factor for the optimized frames are low using the objective function for the construction cost.
A. Kaveh, P. Hosseini, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 1 (1-2022)
Abstract

In recent years many researchers prefer to use metaheuristic algorithms to reach the optimum design of structures. In this study, an Enhanced Vibrating Particle System (EVPS) is applied to get the minimum weight of large-scale dome trusses under frequency constraints. Vibration frequencies are important parameters, which can be used to control the responses of a structure that is subjected to dynamic excitation. The truss structures were analyzed by finite element method and optimization processes were implemented by the computer program coded in MATLAB. The effectiveness and efficiency of the Enhanced Vibrating Particle System (EVPS) is investigated in three large-scale dome trusses 600-, 1180-, and 1410-bar to obtain the weight optimization with frequency constraints.
T. Bakhshpoori,
Volume 12, Issue 1 (1-2022)
Abstract

Metaheuristics are considered the first choice in addressing structural optimization problems. One of the complicated structural optimization problems is the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. On the other hand, natural frequency constraints are useful to control the responses of a dynamically exciting structure. In this regard, this study uses for the first time the water evaporation optimization (WEO) algorithm to address this problem. Four benchmark trusses are considered for experimental investigation of the WEO. Obtained results indicate the comparative performance of WEO to the best-known algorithms in this problem, high performance in comparison to those of different optimization techniques, and high performance in comparison to all algorithms in terms of robustness. The simulation results clearly show a good balance between the global and local exploration abilities of WEO and its potential robust efficiency for other complicated constrained engineering optimization problems.
M. Shahrouzi, R. Jafari,
Volume 12, Issue 2 (4-2022)
Abstract

Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number of investigators as a powerful meta-heuristic algorithm. Several cases of penalty handling techniques are offered and studied using either maximum or summation of constraint violations as well as their combinations. Consequently, the most successive sequence, is identified for the treated continuous and discrete structural examples. Such a dynamic constraint handling is an affordable generalized solution for structural sizing design by iterative population-based algorithms.
 
Sh. Bijari, M. Sheikhi Azqandi,
Volume 12, Issue 2 (4-2022)
Abstract

In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under American Concrete Institute’s ACI 318-05 Standard. So, the numerical examples considered in this study have a large number of design variables and design constraints that make it complicated to converge the global optimal design. The ITEO has an excellent balance between the two phases of exploration and extraction and it has a high ability to find the optimal point of such problems. The comparison results between the ITEO and some other metaheuristic algorithms show the proposed method is competitive compared to others, and in some cases, superior to some other available metaheuristic techniques in terms of the faster convergence rate, performance, robustness of finding an optimal design solution, and needs a smaller number of function evaluations for designing considered constrained engineering problems.
 
A. Kaveh, J. Jafari Vafa,
Volume 12, Issue 2 (4-2022)
Abstract

The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal analysis.
In this paper, the simulated annealing algorithm has been employed to form suboptimal cycle basis. The simulated annealing algorithm works by using local search generating neighbor solution, and also escapes local optima by accepting worse solutions. The results show that this algorithm can be used to generate suboptimal and subminimal cycle bases. Compared to the existing heuristic algorithms, it provides better results. One of the advantages of this algorithm is its simplicity and its ease for implementation.
 
P. Hosseini, A. Kaveh, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 3 (4-2022)
Abstract

Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization technique named Enhanced Vibrating Particle System (EVPS). Finite element analyses of structures and optimization process are coded in MATLAB. Large-scale dome truss of 600-bar, 1180-bar and 1410-bar are investigated in this paper and are compared with the previous studies. Also, a comparison is made between the reliability indexes of Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based Design Optimization (RBDO).
 
D. Sedaghat Shayegan,
Volume 12, Issue 4 (8-2022)
Abstract

In this article, the optimum design of a reinforced concrete solid slab is presented via an efficient hybrid metaheuristic algorithm that is recently developed. This algorithm utilizes the mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The efficiency of this algorithm is compared with mouth-brooding fish (MBF), Neural Dynamic (ND), Cuckoo Search Optimization (COA) and Particle Swarm Optimization (PSO). The cost of the solid slab is considered to be the objective function, and the design is based on the ACI code. The numerical results indicate that this hybrid metaheuristic algorithm can to construct very promising results and has merits in solving challenging optimization problems.
 
V. Nzarpour, S. Gholizadeh,
Volume 13, Issue 1 (1-2023)
Abstract

Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges. The MSA is inspired by the Physics and its superiority over many metaheuristics has been demonstrated in tackling several standard benchmark test functions. In the current work, the performance of MSA is compared with that of two other metaheuristics and it is shown that the MSA is an efficient algorithm to tackle the optimization problem of cable-stayed bridges.
 
M. Ilchi Ghazaan , A.h. Salmani Oshnari , A. M. Salmani Oshnari,
Volume 13, Issue 1 (1-2023)
Abstract

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Algorithm (SCA) is a stochastic optimization method that employs sine and cosine based mathematical models to update a randomly generated initial population. In this paper, we developed a new hybrid approach called hybrid CBO with SCA (HCBOSCA) to obtain reliable structural design optimization of discrete and continuous variable structures, where a memory was defined to intensify the convergence speed of the algorithm. Finally, three structural problems were studied and compared to some state of the art optimization methods. The experimental results confirmed the competence of the proposed algorithm.
 
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract

Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
 
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract

Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
 
A. Kaveh, M. R. Seddighian, N. Farsi,
Volume 13, Issue 2 (4-2023)
Abstract

Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.
 
A. Kaveh, A. Zaerreza,
Volume 13, Issue 3 (7-2023)
Abstract

In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.
 
S. Gholizadeh, C. Gheyratmand , N. Razavi,
Volume 13, Issue 3 (7-2023)
Abstract

The main objective of this study is to optimize reinforced concrete (RC) frames in the framework of performance-based design using metaheuristics. Three improved and efficient metaheuristics are employed in this work, namely, improved multi-verse (IMV), improved black hole (IBH) and modified newton metaheuristic algorithm (MNMA). These metaheuristic algorithms are applied for performance-based design optimization of 6- and 12-story planar RC frames. The seismic response of the structures is evaluated using pushover analysis during the optimization process. The obtained results show that the IBH outperforms the other algorithms.
 
A. Kaveh, A. Zaerreza,
Volume 13, Issue 4 (10-2023)
Abstract

This paper presents the chaotic variants of the particle swarm optimization-statistical regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the performance of the PSO-SRM. These maps are utilized instead of the random number, which defines the solution generation method. The robustness and performance of these methods are tested in the three steel frame design problems, including the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization results reveal that the applied chaotic maps improve the performance of the PSO-SRM.
 
H. Tamjidi Saraskanroud, M. Babaei,
Volume 13, Issue 4 (10-2023)
Abstract

Structural topology optimization provides an insight into efficient designing as it seeks optimal distribution of material to minimize the total cost and weight of the structures. This paper presents an optimum design of steel moment frames and connections of structures subjected to serviceability and strength constraints in accordance with AISC-Load and Resistance Factor Design (LRFD). In connection topology optimizations, different beam and column sections and connections and also to optimize two steel moment frames a genetic algorithm was used and their performance was compared. Initially, two common steel moment frames were studied, only for the purpose of minimizing the weight of the structure and the members of structure are considered as design variables. Since the cost of a steel moment frame is not solely related to the weight of the structure, in order to obtain a realistic plan, in the second part of this study, for the other two frames the cost of the connections is also added to the variables. The results indicate that the steel frame optimization by applying real genetic algorithm could be optimal for structural designing. The findings highlighted the prominent performance and lower costs of the steel moment frames when different connections are used.
 
V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract

The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
 
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract

Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
 

Page 2 from 3     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb