Search published articles


Showing 126 results for Res

M.h. Rabiei, M.t. Aalami, S. Talatahari,
Volume 8, Issue 3 (10-2018)
Abstract

This paper utilizes the Colliding Bodies of Optimization (CBO), Enhanced Colliding Bodies of Optimization (ECBO) and Vibrating Particles System (VPS) algorithms to optimize the reservoir system operation. CBO is based on physics equations governing the one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass and ECBO utilizes memory to save some historically best solutions and uses a random procedure to escape from local optima. VPS is based on simulating free vibration of single degree of freedom systems with viscous damping. To evaluate the performance of these three recent population-based meta-heuristic algorithms, they are applied to one of the most complex and challenging issues related to water resource management, called reservoir operation optimization problems. Hypothetical 4 and 10-reservoir systems are studied to demonstrate the effectiveness and robustness of the algorithms. The aim is on discovering the optimum mix of releases, which will lead to maximum benefit generation throughout the system. Comparative results show the successful performance of the VPS algorithm in comparison to the CBO and its enhanced version.
M. Torkan , M. Naderi Dehkordi,
Volume 8, Issue 4 (10-2018)
Abstract

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this objective, first, a set of data pertaining to concrete mix designs containing fly ash was collected. Then, mix design parameters were used as the inputs of the artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) developed for predicting the compressive strength. In all these models, prediction accuracy largely depends on the parameters of the learning model. Hence, the particle swarm optimization (PSO) algorithm, as a powerful population-based algorithm for solving continuous and discrete optimization problems, was used to determine the optimal values of algorithm parameters. The hybrid models were trained and tested with 426 experimental data and their results were compared by statistical criteria. Comparing the results of the developed models with the real values showed that the ANFIS-PSO hybrid model has the best performance and accuracy among the assessed methods.
K. Biabani Hamedani , V. R. Kalatjari,
Volume 8, Issue 4 (10-2018)
Abstract

Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint. The framework is in the form of a computer program called RBO-S>S. The objective of the optimization is to minimize the total weight of the truss structures against the aforementioned constraint. System reliability analysis of truss structures is performed through branch-and-bound method. Also, optimization is carried out by genetic algorithm. The research results show that system reliability analysis of truss structures can be performed with sufficient accurately using the RBO-S>S program. In addition, it can be used for optimal design of truss structures. Solutions are suggested to reduce the time required for reliability analysis of truss structures and to increase the precision of their reliability analysis.
R. Soofifard1, M. Khakzar Bafruei, M. Gharib,
Volume 8, Issue 4 (10-2018)
Abstract

Risks are natural and inherent characteristics of major projects. Risks are usually considered independently in analysis of risk responses. However, most risks are dependent on each other and independent risks are rare in the real world. This paper proposes a model for proper risk response selection from the responses portfolio with the purpose of optimization of defined criteria for projects. This research has taken into account the relationships between risk responses; especially the relationships between risks, which have been rarely considered in previous works. It must be pointed out that not considering or superficial evaluation of the interactions between risks and risk responses reduces the expected desirability and increases project execution costs. This model is capable of optimization of different criteria in the objective function based on the proposed projects. Multi-objective Harmony Search (MOHS) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve this model and the numerical results obtained are analyzed. Finally, it was observed that ranges of objective functions in MOHS are better than those in NSGA-II.
K. Khashi, H. Dehghani, A. A. Jahanara,
Volume 8, Issue 4 (10-2018)
Abstract

This paper illustrates an optimization procedure of concrete beam-column joints subjected to shear that are strengthened with fiber reinforced polymer (FRP). For this aim, five different values have been considered for length, width and thickness of the FRP sheets which created 125 different models to strengthen of concrete beam-column joints. However, by using response surface methodology (RSM) in design expert software the number of these models is reduced to 20. Then, each of 20 models is simulated in ABAQUS finite element software and shear capacity is also determined. The relationship between different dimensions of the FRP sheets and shear capacity are specified by using RSM. Furthermore the optimum dimensions are determined by particle swarm optimization (PSO) algorithm.
B. Ganjavi, G. Ghodrati Amiri,
Volume 9, Issue 1 (1-2019)
Abstract

In the present study, ten steel-moment resisting frames (SMRFs) having different numbers of stories ranging from 3 to 20 stories and fundamental periods of vibration ranging from 0.3 to 3.0 second were optimized subjected to a set of earthquake ground motions using the concept of uniform damage distribution along the height of the structures. Based on the step-by-step optimization algorithm developed for uniform damage distribution, ductility-dependent strength reduction factor spectra were computed subjected to a given far-fault earthquake ground motion. Then, the mean ductility reduction factors subjected to 20 strong ground motions were computed and compared with those designed based on load pattern of ASCE-7-16 (similar to standard No. 2800) code provision. Results obtained from parametric studies indicate that, except in short-period structures, for moderate and high levels of inelastic demand the structures designed based on optimum load pattern with uniform damage distribution along the height require larger seismic design base shear strength when compared to the frames designed based on the code provisions, which is more pronounced for long-period structures i.e., the structural system becomes more flexible. This phenomenon can be associated to the P-delta effect tending to increase the story drift ratios of flexible structures, especially at the bottom stories. For practical purpose, a simplified expression which is a function of fundamental period and ductility demand to estimate ductility-dependent strength reduction factors of designed SMRFs according to code-based lateral load pattern is proposed.
M. Rostami , M. Bagherpour,
Volume 9, Issue 1 (1-2019)
Abstract

During the past two decades, some industries have been moving towards project-centered systems in many modern countries. Therefore, managing simultaneous projects with considering the limitations in resources, equipment and manpower is very crucial. In the real world, project-based organizations are always facing with two main important features. First, the construction projects are decentralized and their distances are long, and second, there are several construction projects undertaken at different time periods. Therefore, appropriate selection of projects with regard to the capabilities of the organization may lead with increasing an expected profitability. This paper investigates the multi-period decentralized multi construction-project and scheduling problem subject to resource constraints, optimal resource pool location, deterioration and batch ordering of nonrenewable resources altogether, for the first time in the literature. In order to describe the problem under consideration in this paper and obtaining the optimal solutions, a mixed integer linear programming model is developed. Finally, the impact of decision integration on the profit profile of an organization is comprehensively investigated by solving numerical examples and through developing some heuristic methods.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract

Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.
S. Gholizadeh, R. Sojoudizadeh,
Volume 9, Issue 2 (4-2019)
Abstract

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical functions has been demonstrated in literature. However, its performance in tackling the discrete optimization problems of truss structures is not competitive compared with the existing metaheuristic algorithms. In the framework of the proposed MSCA, a number of worst solutions of the current population is replaced by some variants of the global best solution found so far. Moreover, an efficient mutation operator is added to the algorithm that reduces the probability of getting stuck in local optima. The efficiency of the proposed MSCA is illustrated through multiple benchmark optimization problems of truss structures.
M. Araghi, M. Khatibinia,
Volume 9, Issue 2 (4-2019)
Abstract

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel functions in order to improve the learning and generalization ability of WLS–SVM. In the proposed method, a linear convex combination of the radial basis function (RBF) and Morlet wavelet kernel functions is adopted, which are considered as the most popular kernel functions. To validate the efficiency of the proposed method, experiments are conducted on a database including 118 uniaxial dynamic creep test results. The results of the statistical criteria show a good agreement between the predicted and measured flow number values. Further, the simulation results demonstrate that the proposed MK–SVM approach has more superior performance than the single kernel based WLS–SVM and other methods found in the literature.
Y. Sharifi, M. Hosseinpour,
Volume 9, Issue 2 (4-2019)
Abstract

In the current study two methods are evaluated for predicting the compressive strength of concrete containing metakaolin. Adaptive neuro-fuzzy inference system (ANFIS) model and stepwise regression (SR) model are developed as a reliable modeling method for simulating and predicting the compressive strength of concrete containing metakaolin at the different ages. The required data in training and testing state obtained from a reliable data base. Then, a comparison has been made between proposed ANFIS model and SR model to have an idea about the predictive power of these methods.
J. Sobhani, M. Ejtemaei, A. Sadrmomtazi, M. A. Mirgozar,
Volume 9, Issue 2 (4-2019)
Abstract

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 
H. Fattahi,
Volume 9, Issue 2 (4-2019)
Abstract

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there are nonlinear and unknown relationships between rock properties and TBM penetration rate. Relevance vector regression (RVR) is one of the robust artificial intelligence algorithms proved to be very successful in recognition of relationships between input and output parameters. The aim of this paper is to show the application of RVR in prediction of TBM performance. The model was applied to available data given in open source literatures. In this model, uniaxial compressive strengths of the rock (UCS), the distance between planes of weakness in the rock mass (DPW) and rock quality designation (RQD) were utilized as the input parameters, while the measured TBM penetration rates was the output parameter. The performances of the proposed predictive model was examined according to two performance indices, i.e., coefficient of determination (R2) and mean square error (MSE). The obtained results of this study indicated that the RVR is a reliable method to predict penetration rate with a higher degree of accuracy.
A. Kaveh, M.r. Seddighian, E. Ghanadpour,
Volume 9, Issue 3 (6-2019)
Abstract


Despite widespread application of grillage structures in many engineering fields such as civil, architecture, mechanics, their analysis and design make them more complex than other type of skeletal structures. This intricacy becomes more laborious when the corresponding
analysis and design are based on plastic concepts.
In this paper, Finite Element Method is utilized to find the lower and the upper bounds solutions of rectangular planner grids and this method is compared with analogues Finite Difference Method to indicate the efficiency of proposed approach.

 
S. Amini-Moghaddam, M. I. Khodakarami, B. Nikpoo,
Volume 10, Issue 1 (1-2020)
Abstract

This paper aims to obtain the optimal distance between the adjacent structures using Particle Swarm Optimization (PSO) algorithm considering structure-soil-structure systems; The optimization algorithm has been prepared in MATLAB software and connected into OpenSees software (where the structure-soil-structure system has been analyzed by the direct approach). To this end, a series of adjacent structures with various slenderness have been modeled on the three soil types according to Iranian seismic code (Standard No. 2800) using the direct method. Then they have been analyzed under six earthquake excitations with different risk levels (low, moderate, and high).
The results are compared with the proposed values of separation gap between adjacent structures in the Iranian seismic code (Standard No. 2800). Results show that since structures with the same height constructed on a stiff soil will move in the same phase, there is no need to put distance between them. Although, the structures with the height more than 6-story frames where are located on a soft soil are needed to be separated. Additionally, the results show more separation gap between two adjacent structures when the risk level of earthquake is high. In general, the values which are presented in Standard No. 2800 are not suitable for low /moderate-rise structures specially when they are subjected to a high-risk level earthquake and are located on a soft soil and this separation gap should be increased about 10 to 90 percentage depend on the conditions but these values are appropriate for the adjacent structures with same height where are subjected to a low-risk level earthquakes built on soft soil.
D. Pourrostam, S. Y. Mousavi, T. Bakhshpoori, K. Shabrang,
Volume 10, Issue 2 (4-2020)
Abstract

In recent years, soft computing and artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been effectively used in various civil engineering applications. This study aims to examine the potential of ANN and ANFIS for modeling the compressive strength of concrete containing expanded perlite powder (EPP). For doing this, a total of forty-five EPP incorporated concrete mixtures were produced and tested for compressive strength at different curing ages of 3, 7, 28, 42 and 90 days. Two different ANN models were developed and the suitable and stable ANN architecture for each model was considered by calculating various statistical parameters. For comparative purposes, two ANFIS models with different membership functions were also trained. According to the results, it can be concluded that the proposed ANN models relatively give a good degree of accuracy in predicting the compressive strength of concrete made with EPP, higher than that of observed from ANFIS models.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract

Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
H. Fattahi ,
Volume 10, Issue 2 (4-2020)
Abstract

The evaluation of seismic slope performance during earthquakes is important, because the failure of slope (such as an earth dam, natural slope, or constructed earth embankment) can result in significant financial losses and human. It is important, therefore, to be able to forecast such displacements induced by earthquake. However, the traditional forecasting methods, such as empirical formulae, are inaccurate because most of them do not take into consideration all the relevant factors. In this paper, new intelligence method, namely relevance vector regression (RVR) optimized by dolphin echolocation (DE) and grey wolf optimizer (GWO) algorithms is introduced to forecast the earthquake induced displacements (EID) of slopes. The DE and GWO algorithms is combined with the RVR for determining the optimal value of its user-defined paramee RVR. The performances of the proposed predictive models were examined according to two performance indices, i.e., coefficient of determination (R2) and mean square error (MSE). The obtained results of this study indicated that the RVR-GWO model is a reliable method to forecast EID with a higher degree of accuracy (MSE= 0.0160 and R2= 0.9955).
M. Shahrouzi, N. Khavaninzadeh , A. Jahanbakhsh,
Volume 10, Issue 2 (4-2020)
Abstract

Partricular features of overpassing local optima and providing near-optimal soultion in practical time has led researchers to apply metaheuristics in several engineering problems. Optimal design of diagrids as one of the most efficient structural systems in tall buildings has been concerned here. Jaya algorithm as a recent paramter-less optimization method is employed to solve the problem using a set of available sections. Furthermore, passive congregation is embedded in Jaya without adding any extra control parameters. Applyig the method in a number of real-size structural examples including diagrids, exhibits performance improvement by the new hybrid algorithm with respect to Jaya.
F. Rahmani, R. Kamgar, R. Rahgozar,
Volume 10, Issue 2 (4-2020)
Abstract

The purpose of this study is to evaluate the long-term vertical deformations of segmented pre-tensioned concrete bridges by a new approach. It provides a practical and reliable method for calculating the amount of long-term deformation based on creep and shrinkage in segmented prestress bridges. There are various relationships for estimating the creep and shrinkage of concrete. The analytical results of existing models can be very different, and the results are not reliable. In this paper, the different existing relationships are written in MATLAB software. After calculation, the values of the creep and shrinkage are stored. Then a sample bridge is simulated in the CSI-Bridge software, and different values of creep and shrinkage are allocated separately. Therefore, the data are analyzed, and its maximum deformation value is extracted at a critical span (Dv-max). Assigning different amount of creep and shrinkage to the model results in different values  of Dv-max. In the next step, all Dv-max values  resulting from the change in creep and shrinkage contents should be re-introduced to MATLAB code to perform the calculation of the failure curve, and extract the corresponding Dv-max values at 95% probability. In a new approach, fragility curves are used to obtain the corresponding creep and shrinkage values corresponding to the desired probability percentage. Thus, instead of simulating several models, only one model is simulated. The results of the analysis of a bridge sample in this study indicate acceptable accuracy of the proposed solution for the 95% probability.

Page 4 from 7     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb