Showing 54 results for Han
B. H. Sangtarash, M. R. Ghasemi, H. Ghohani Arab, M. R. Sohrabi,
Volume 11, Issue 1 (1-2021)
Abstract
Over the past decades, several techniques have been employed to improve the applicability of the metaheuristic optimization methods. One of the solutions for improving the capability of metaheuristic methods is the hybrid of algorithms. This study proposes a new optimization algorithm called HPBA which is based on the hybrid of two optimization algorithms; Big Bang-Big Crunch (BB-BC) inspired by the theory of the universe evolution and Artificial Physics Optimization (APO) which is a physical base optimization method. Finally, the performance of the proposed optimization method is compared with the originated methods. Moreover, the performance of the proposed algorithm is evaluated for truss optimization as an applied constrained optimization problem.
H. Dehghani, M. Amiri Moghadam, S. H. Mahdavi,
Volume 11, Issue 3 (8-2021)
Abstract
Selecting an appropriate flooring system is essential for structures. Flooring system design has traditionally focused on weight loss and minimizing costs. However, in recent years, the focus of this sector has changed to include improving the environmental performance of building materials and construction systems. This paper illustrates a knowledge-based expert system as a tool to assess of flooring systems such as block joisted (BJ), steel-concrete composite (SCC), composite steel deck (CSD) and concrete slab (CS) based on sustainability criteria that are further divided into twenty sub-criteria. Analytical hierarchy process (AHP) is utilized as a multi-criteria decision making technique that helps to compute weights and rankings of sustainability criteria. For this purpose, some questionnaires completed by construction industry experts in order to compare criterions and sub-criteria in addition to assessment of optimized flooring systems. Then, results of the questionnaires are ranked by AHP and the most significant alternative is selected. The AHP results indicate that CSD system 47.9%, CS; 29.8%, SCC; 12.7% and BJ system 9.6% are the most and the least efficient systems, respectively.
R. Javanmardi , B. Ahmadi-Nedushan,
Volume 11, Issue 3 (8-2021)
Abstract
In this research, the optimization problem of the steel-concrete composite I-girder bridges is investigated. The optimization process is performed using the
pattern search algorithm, and a parallel processing-based approach is introduced to improve the performance of this algorithm. In addition, using the open application programming interface (OAPI), the SM toolbox is developed. In this toolbox, the OAPI commands are implemented as MATLAB functions. The design variables represent the number and dimension of the longitudinal beam and the thickness of the concrete slab. The constraints of this problem are presented in three steps. The first step includes the constraints on the web-plate and flange-plate proportion limits and those on the operating conditions. The second step consists of considering strength constraints, while the concrete slab is not yet hardened. In the third step, strength and deflection constraints are considered when the concrete slab is
hardened. The AASHTO LRFD code (2007) for steel beam design and AASHTO LRFD (2014) for concrete slab design are used. The numerical examples of a sloping bridge with a skew angle are presented. Results show that active constraints are those on the operating conditions and component strength and that in terms of CPU time, a 19.6% improvement is achieved using parallel processing.
E. Jahani, M. Roozbahan,
Volume 11, Issue 4 (11-2021)
Abstract
The multiple tuned mass dampers (MTMDs) are considered among the control systems used for reducing the vibration of buildings under seismic excitations. A large number of the previous studies have mainly emphasized on the utilization and effectiveness of MTMD on linear structure responses, and few of them have investigated the effectiveness of MTMD on nonlinear multi-degree of freedom structures. Thus, in this paper, the effectiveness of MTMD on nonlinear buildings have been investigated. The effectiveness of the MTMD systems lies in their parameters, and the location of dampers in buildings. Accordingly, the optimization of MTMD’s properties, as well as its location, are taken into account in the present study. The Mouth Brooding Fish algorithm, which is a new optimization method is utilized for optimizing the properties corresponding to the MTMD system. The effectiveness levels of the MTMDs were compared with the efficiency of an equal optimally tuned mass damper (TMD), which was placed on the top of the building. The results of these comparisons revealed that MTMDs have provided a better efficiency compared to TMDs in reducing the maximum displacement of nonlinear structures. Moreover, MTMDs have a higher effectiveness when placed on different floors of the building.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 12, Issue 1 (1-2022)
Abstract
This article presents numerical studies on semi-active seismic response control of structures equipped with Magneto-Rheological (MR) dampers. A multi-layer artificial neural network (ANN) was employed to mitigate the influence of time delay, This ANN was trained using data from the El-Centro earthquake. The inputs of ANN are the seismic responses of the structure in the current step, and the outputs are the MR damper voltages in the current step. The required training data for the neural controller is generated using genetic algorithm (GA). Using the El-Centro earthquake data, GA calculates the optimal damper force at each time step. The optimal voltage is obtained using the inverse model of the Bouc-Wen based on the predicted force and the corresponding velocity of the MR damper. This data is stored and used to train a multi-layer perceptron neural network. The ANN is then employed as a controller in the structure. To evaluate the efficiency of the proposed method, three- story, seven- story and twenty-story structures with a different number of MR dampers were subjected to the Kobe, Northridge, and Hachinohe earthquakes. The maximum reduction in structural drifts in the three-story structure are 13.05%, 39.90%, 15.89%, and 8.21%, for the El-Centro, Hachinohe, Kobe, and Northridge earthquakes, respectively. As the control structure is using a pre-trained neural network, the computation load in the event of an earthquake is extremely low. Additionally, as the ANN is trained on seismic pre-step data to predict the damper's current voltage, the influence of time lag is also minimized.
M. Roozbahan,
Volume 12, Issue 2 (4-2022)
Abstract
Some structural control systems have been devised to protect structures against earthquakes, which the tuned mass damper (TMD) being one of the earliest. The effect of a tuned mass damper depends on its properties, such as mass, damping coefficient, and stiffness. The parameters of tuned mass dampers need to be tuned based on the main system and applied load. In most of the papers, the parameters of TMDs have been tuned based on the nominal parameters of structures. Also, most of the studies considered the minimization of maximum displacement of structure as the objective function of optimizing the parameters of tuned mass dampers. In this study, according to the Monte Carlo method and using the Mouth Brooding Fish algorithm, TMDs have been optimized based on the reliability of structures regarding the uncertain parameters of buildings, and their efficiency in the reduction of maximum displacement and failure probability of hundreds generated buildings with uncertain parameters, are compared with the efficiency of the displacement-based optimized TMDs. The results show that the TMDs optimized regarding uncertainty have better efficiency in reducing the maximum displacement, and failure probability of buildings than the TMDs optimized regarding nominal parameters of buildings. Also, according to the results, the displacement-based optimized TMDs regarding uncertainty show better efficiency in reducing the failure probability and displacement of the buildings than reliability-based optimized TMDs.
R. Babaei Semriomi, A. Keyhani,
Volume 12, Issue 2 (4-2022)
Abstract
This paper introduces a reliability-based multi-objective design method for spatial truss structures. A multi-objective optimization problem has been defined considering three conflicting objective functions including truss weight, nodal deflection, and failure probability of the entire truss structure with design variables of cross sectional area of the truss members. The failure probability of the entire truss system has been determined considering the truss structure as a series system. To this end, the uncertainties of the applied load and the resistance of the truss members have been accounted by generating a set of 50 random numbers. The limitations of members' allowable have been defined as constraints. To explain the methodology, a 25-bar benchmark spatial truss has been considered as the case study structure and has been optimally designed using the game theory concept and genetic algorithm (GA). The results show effectiveness and simplicity of the proposed method which can provide Pareto optimal solution. These optimal solutions can provide both safety and reliability for the truss structure.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 13, Issue 2 (4-2023)
Abstract
In this study, the response of semi-actively controlled structures is investigated, with a focus on the effects of magneto-rheological (MR) damper distribution on the seismic response of structures such as drift and acceleration. The proposed model is closed loop, and the structure's response is used to determine the optimal MR damper voltage. A Fuzzy logic controller (FLC) is employed to calculate the optimum voltage of MR dampers. Drifts and velocities of the structure’s stories are used as FLC inputs. The FLC parameters and the distribution of MR dampers across stories are determined using the NSGA-II, when the structure is subjected to the El-Centro earthquake, so as to minimize the peak inter-story drift ratio and peak acceleration simultaneously. The efficiency of the proposed approach is illustrated through a twenty-story nonlinear benchmark structure. Non-dominated solutions are obtained to minimize the inter-story drift and acceleration of structures and Pareto front produced. Then, the non-dominated solutions are used to control the seismic response of the benchmark structure, which was subjected to the Northridge, Kobe, and Hachinohe earthquake records. In the numerical example the maximum drift and acceleration decrease by about 36.3% and 15%, respectively, in the El-Centro earthquake. The results also demonstrate that the proposed controller is more efficient in reducing drift than reducing acceleration.
F. Damghani , S. M. Tavakkoli,
Volume 13, Issue 2 (4-2023)
Abstract
An efficient method is proposed by using time domain responses and topology optimization to identify the location and severity of damages in two-dimensional structures under plane stress assumption. Damage is assumed in the form of material density reduction in the finite element model of the structure. The time domain responses utilized here, are the nodal accelerations measured at certain points of the structure. The responses are obtained by the Newmark method and contaminated with uniformly random noise in order to simulate real conditions. Damage indicators are extracted from the time domain responses by using Singular Value Decomposition (SVD). The problem of damage detection is presented as a topology optimization problem and the Solid Isotropic Material with Penalization (SIMP) method is used for appropriate damage modeling. The objective function is formed based on the difference of singular values of the Hankel matrix for responses of real structure and the analytical model. In order to evaluate the correctness of the proposed method, some numerical examples are examined. The results indicate efficiency of the proposed method in structural damage detection and its parameters such as resampling length in SVD, penalty factor in the SIMP method and number and location of sensors are effective parameters for improving the results.
A. Fatholahi, S. Sadat Sajadieh, R. Kamgar, R. Rohani Sarvestani, R. Alipour,
Volume 13, Issue 3 (7-2023)
Abstract
Improving the quality of open spaces and human comfort is necessary for more human-inaccessible spaces. Therefore, bus stations as open spaces for traveling thousands of people continuously are considered essential in absorbing sun rays and providing comfort. This paper investigates the performance of BRT stations in Tehran province in the summer, considering the highest shading. The second stage proposes a new graphic cable-stayed roof to compare the sun's path and shade. Ten stations of Moein-Tajrish terminals with South-North orientation were selected in this regard. Then, all the station details were calculated and analyzed in the Grasshopper Modeling Software. And the shadow and sunlight were evaluated and analyzed during the summer months between 12 am to 2 pm at noon. In order to evaluate the compatibility of the selected samples, three variables, including orientation, the height of the awning, and the slope of the awning, were considered orientation of 5, the height of 1, and the gradient of 19 introduced as the most optimal model. Also, studies and analyses were carried out in Honey Bee & Ladybug plugins, including Qualitative Analysis, Hourly Quantitative Analysis, and Energy Quantitative Analysis. The results showed that the selected case sample is more than 55% in the desired shading. The second stage proposes a new graphic cable-stayed roof to compare the sun's path and shade for the structure.
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract
Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
A.h. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 2 (2-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
F. Biabani, A. A. Dehghani, S. Shojaee, S. Hamzehei-Javaran,
Volume 14, Issue 3 (6-2024)
Abstract
Optimization has become increasingly significant and applicable in resolving numerous engineering challenges, particularly in the structural engineering field. As computer science has advanced, various population-based optimization algorithms have been developed to address these challenges. These methods are favored by most researchers because of the difficulty of calculations in classical optimization methods and achieving ideal solutions in a shorter time in metaheuristic technique methods. Recently, there has been a growing interest in optimizing truss structures. This interest stems from the widespread utilization of truss structures, which are known for their uncomplicated design and quick analysis process. In this paper, the weight of the truss, the cross-sectional area of the members as discrete variables, and the coordinates of the truss nodes as continuous variables are optimized using the HGPG algorithm, which is a combination of three metaheuristic algorithms, including the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf Optimization (GWO). The presented formulation aims to improve the weaknesses of these methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses were utilized to show the efficiency of the HGPG method, so the weight of these examples was optimized while their constraints such as stress limitations, displacement constraints, and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and continuous modes to optimize the size and geometric configuration of truss structures, allowing for comprehensive structural optimization. The numerical results show the suitable performance of this process.