Search published articles


Showing 473 results for Type of Study: Research

A. H. Salarnia, M. R. Ghasemi,
Volume 11, Issue 3 (8-2021)
Abstract

Pedestrian bridge is a structure constructed to maintain the safety of citizens in crowded and high-traffic areas. With the expansion of cities and the increase in population, the construction of bridges is necessary for easier and faster transportation, as well as the safety of pedestrians and vehicles. In this article, it is decided to consider the most economical cross-sections for these bridges according to the design regulations and codes of Practice in order to achieve the minimum weight, which will ultimately reduce the cost of construction and production and the usage of less resources. For this purpose, new GSS-PSO algorithm has been used and its results have been compared with GA and PSO algorithms, by the means of which an enhancement of PSO algorithm is seen. This enhancement on the conventional PSO technique reduces the search space more desirably and swiftly to a space close to the global optimum point. This algorithm has been implemented with MATLAB mathematical software and has been integrated with SAP2000v22 structural design software for analysis and optimum design under resistance and displacement constraints. The final results of the analyses are compared with an already designed and implemented infrastructure. In addition to a bridge optimization, a bench-mark frame optimization was also used in order for a better comparison between this algorithm and the other ones.
H. Safaeifar, M. Sheikhi Azqandi,
Volume 11, Issue 3 (8-2021)
Abstract

The impact damper is a passive method for controlling vibrations of dynamic systems. It is designed by placing one or several masses in a container, which is installed on the structure. Damping performance is affected by many parameters, such as the mass ratio of the primary structure, size, number, and material of the particles, friction and restitution coefficients of the particles and gap distance. Impact damper is effective, economical, and practical and its functionality can be further enhanced by an optimal design. In this paper, first, the mathematical modeling of a rigid impact damper used in free vibration reduction of a single degree of freedom (SDOF) system is performed. The results on this step are validated with those results of previous studies, and a good agreement is achieved. Next, the robust hybrid optimization method that is called Imperialist Competitive Ant Colony Optimization (ICACO) is introduced. After that, the damper function is optimized using ICACO, and the optimum values of the effective parameters for maximizing damping effectiveness are obtained. Comparing the results of the optimized and the basic designs shows that the optimization method is robust and the optimal results are practical. The optimum design of damper parameters using ICACO method can damp more than %94 of the system’s initial energy in a short time.
M. Danesh, J. Abdolhoseyni,
Volume 11, Issue 3 (8-2021)
Abstract

Nowadays, energy crisis is one of the most important issues faced by most countries. Given the accommodation of a large population, high-rise buildings have a significant role in creating or resolving this crisis. A recent solution with regard to the optimization and reduction of energy consumption is using smart systems in buildings. In fact, with the help of modern knowledge, smart buildings consume energy in the right place and time. By transforming a simple building into a dynamic one, not only will it be able to adapt to changing environmental conditions, it will also consider the living habits of dwellers and comfort standards in order to provide maximum satisfaction. Moreover, the money spent on making smart appliances will be fully compensated after a short while, saving the overall costs and energy. This descriptive-analytical study, conducted using library resources, e-books and papers, is an attempt to examine the effect of smartization on optimizing and increasing the efficiency of high-rise buildings. The results of comprehensive surveys in various sectors related to smart buildings show that one can optimize energy consumption to take an effective step in solving global energy issues using smart systems in buildings. This study is devoted to energy consumption of smart systems employing an efficient continuous evolutionary meta-heuristic algorithm.
H. Veladi, R. Beig Zali,
Volume 11, Issue 3 (8-2021)
Abstract

The optimal design of dome structures is a challenging task and therefore the computational performance of the currently available techniques needs improvement. This paper presents a combined algorithm, that is supported by the mixture of Charged System Search (CSS) and Teaching-Learning-based optimization (TLBO). Since the CSS algorithm features a strong exploration and may explore all unknown locations within the search space, it is an appropriate complement to enhance the optimization process by solving the weaknesses with using another optimization algorithm’s strong points. To enhance the exploitation ability of this algorithm, by adding two parts of Teachers phase and Student phase of TLBO algorithm to CSS, a method is obtained that is more efficient and faster than standard versions of these algorithms. In this paper, standard optimization methods and new hybrid method are tested on three kinds of dome structures, and the results show that the new algorithm is more efficient in comparison to their standard versions.
Z. Roszevák, I. Haris,
Volume 11, Issue 3 (8-2021)
Abstract

Nowadays, the behavior of designed structures is mostly studied using numerical software products. It is important that the models are sufficiently simple, but the calculated values approximate well the real behavior of the structures. In order for a numerical model to realistically describe the structural behavior, the software used must have material models that are parametrized accordingly. The primary purpose of this article is to create various prefabricated reinforced concrete specific joints in a simply prefabricated RC frame. Thus, in the present study, we examined prefabricated column-cup foundation and column-beam connections. The numerical analyses were carried out in the ATENA 3D software, in which the modeling technique we have developed can be used to examine reinforced concrete structures and structural details at a high level. In these studies, we highlight the differences between linear and nonlinear numerical methodologies. During our investigations, we analyze the joints of the examined frame in separate models on which we operate monotonically increasing vertical and horizontal loads. We examine the obtained load-displacement graphs, the failure of the connections, and the behavior of the elements that make up each connection.
Finally, we extended the relationship by modeling the beam of the frame position, pointing out the behavior of the entire structure.
M.h. Talebpour, Y. Abasabadaraby,
Volume 11, Issue 4 (11-2021)
Abstract

In recent decades, steel was used more than other materials in structural engineering. However, the safety of high-heat steel structures dramatically decreased, due to steel mechanical properties. Therefore, the design process should be done in a way that the structure has the required resistance at high temperatures and during the fire, according to the effect of heat on the performance of steel structures. In this study, the optimal design process of steel structures is considered under the fire load. In the optimal design process, the failure risk of the structure members is considered as a constraint. Therefore, the optimization process requires thermal and structural reliability analysis. A parametric model has been used to analyse the reliability of the structure in the fire limit state. The optimization process is also performed based on the Colliding Bodies Optimization (CBO) algorithm. In order to evaluate the optimal design process, 3 and 6-floors frames have been investigated. The results showed that the members' condition is effective in the structural resistance for the thermal loading. On the contrary, the structure design based on the reliability under the fire load provides a proper prediction from the behaviour of the structure and satisfies the requirements for the common state of design.
M. Jafari Vardanjani, M. Izadi, H. Varesi,
Volume 11, Issue 4 (11-2021)
Abstract

Optimization of public space energy consumption can basically improve the savings and the ratio of energy consumption and resources entirely. In this regard any methodology and system to shorten the redundant use of energy in different spots of the public space and to distribute energy based on significance of each zone will contribute in the task. This study has sought to develop a prototype of a multi-function smart system to monitor and control the use of energy in a space in terms of temperature, brightness and ventilation based on the significance of each zone according to the traffic calculated during time periods. Although in the current prototype there has not yet been photovoltaics embedded in the device, it has been accounted for in software section.
The monitoring system performs to monitor and store temperature, light intensity, CO2 concentration, and traffic at each zone while control system acts based on the zone significance and mechanism used in each energy consuming device including heaters, coolers, lights, etc. Findings on pilot scale shows that optimization of energy usage by such a system can drastically reduce space energy consumption while the optimal configuration of the multi-function system depends on the space conditions. Space conditions include climatic, area, etc. Although zero-energy building require further researches to be realized and utilized, this system can be perceived as first steps toward this goal.
P. Zakian,
Volume 11, Issue 4 (11-2021)
Abstract

Natural frequencies of a structure give useful information about the structural response to dynamic loading. These frequencies should be far enough from the critical frequency range of dynamic excitations like earthquakes in order to prevent the resonance phenomenon sufficiently. Although there are many investigations on optimization of truss structures subjected to frequency constraints, just a few studies have been considered for optimal design of frame structures under these constraints. In this paper, a recently proposed metaheuristic algorithm called Adaptive Charged System Search (ACSS) is applied to optimal design of steel frame structures considering the frequency constraints. Benchmark design examples are solved with the ACSS, and optimization results are illustrated in terms of some statistical indices, convergence history and solution quality. The design examples include three planar steel frames with small to large number of design variables. Results show that the ACSS outperforms the charged system search algorithm in this sizing optimization problem.
A. A. Saberi, D. Sedaghat Shayegan,
Volume 11, Issue 4 (11-2021)
Abstract

Optimization has always been a human concern from ancient times to the present day, also in light of advances in computing equipment and systems, optimization techniques have become increasingly important in different applications. The role of metaheuristic algorithms in optimizing and solving engineering problems is expanding every day, optimization has also had many applications in water engineering. Every year, the effects of climate change and the water crisis deepen and worsen in many parts of the world, and existing water management becomes much more vital and critical. One of the main centers for water management and control dams reservoirs. In this paper, applying the CBO metaheuristic algorithm, the results of optimization in the operation of the Haraz dam reservoir in northern Iran, which has previously been done with FA and GA algorithms and standard operation system (SOP), are reviewed and compared. With the implementation of the CBO algorithm, all results and key outputs such as program runtime, annual water shortages, and vulnerabilities are much better than previous calculations, all the results are mentioned in the text of the article, but for example, the annual water shortage has reached about 38% of the FA algorithm, about 25% of the GA algorithm and about 13% of the SOP method. The numerical results demonstrate that the CBO algorithm has merits in solving challenging optimization problems and using this innovative algorithm can be an important starting point in the operation of dam reservoirs around the world.
M. Danesh, A. Iraji , S. Jaafari,
Volume 11, Issue 4 (11-2021)
Abstract

The main object in optimizing reinforced concrete frames based on the performance is decreasing the initial cost or life cycle cost or total cost. The optimization performed here is with the requirement of satisfying story drifts and rotation of plastic hinges. However, this optimization may decrease seismic strength of the structure. Newton Meta-Heuristic Algorithm (NMA) was used to optimize three-, six-, and twelve-story reinforced concrete frames based on the performance and utilizing the cost objective function. The seismic parameters of the optimized frames were calculated. The results showed that the inter-story drifts at the performance level of LS controls the design. According to the results, the objective function for construction cost is not useful for the optimization of the reinforced concrete frames. Because the amounts of the over strength, the absorbed plastic energy, and the ductility factor for the optimized frames are low using the objective function for the construction cost.
S. Shabankhah, A. Heidari, R. Kamgar,
Volume 11, Issue 4 (11-2021)
Abstract

Seismic analysis of structures is a process for estimating the response of structures subjected to earthquakes. For this purpose, the earthquake ­is analyzed using the wavelet theory. In this paper, the primary signal of the earthquake is decomposed through a discrete wavelet transform, and their corresponding response spectrum is obtained. Then, the percentage difference between the decomposed signals and the main one is computed. Therefore, for different earthquakes, a comparison between the response spectrum is studied in various types of dams. The acceleration, velocity, and displacement responses are computed and compared to achieve an appropriate level of decomposition, which can be used instead of the primary signal. Therefore, the decomposition process leads to attaining acceptable accuracy as well as low computational cost. The investigation revealed that the acceleration, velocity, and displacement responses spectrum are suitable up to the third level of decomposition for the small and medium dams, whereas for large dams, up to the fifth level of decomposition is suitable.
E. Jahani, M. Roozbahan,
Volume 11, Issue 4 (11-2021)
Abstract

The multiple tuned mass dampers (MTMDs) are considered among the control systems used for reducing the vibration of buildings under seismic excitations. A large number of the previous studies have mainly emphasized on the utilization and effectiveness of MTMD on linear structure responses, and few of them have investigated the effectiveness of MTMD on nonlinear multi-degree of freedom structures. Thus, in this paper, the effectiveness of MTMD on nonlinear buildings have been investigated. The effectiveness of the MTMD systems lies in their parameters, and the location of dampers in buildings. Accordingly, the optimization of MTMD’s properties, as well as its location, are taken into account in the present study. The Mouth Brooding Fish algorithm, which is a new optimization method is utilized for optimizing the properties corresponding to the MTMD system. The effectiveness levels of the MTMDs were compared with the efficiency of an equal optimally tuned mass damper (TMD), which was placed on the top of the building. The results of these comparisons revealed that MTMDs have provided a better efficiency compared to TMDs in reducing the maximum displacement of nonlinear structures. Moreover, MTMDs have a higher effectiveness when placed on different floors of the building.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad,
Volume 11, Issue 4 (11-2021)
Abstract

The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic optimization algorithm that simulates the distribution characteristics of the four basic arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been successfully applied to solve some optimization problems. However, the AOA suffers from poor exploration and prematurely converges to non-optimal solutions, especially when dealing with multi-dimensional optimization problems. More recently, in order to overcome the shortcomings of the original AOA, an improved version of AOA, named IAOA, has been proposed and successfully applied to discrete structural optimization problems. Compared to the original AOA, two major improvements have been made in IAOA: (1) The original formulation of the AOA is modified to enhance the exploration and exploitation capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the optimal design of large-scale dome-like truss structures with multiple frequency constraints. To the best of our knowledge, this is the first time that IAOA is applied to structural optimization problems with frequency constraints. Three benchmark dome-shaped truss optimization problems with frequency constraints are investigated to demonstrate the efficiency and robustness of the IAOA. Experimental results indicate that IAOA significantly outperforms the original AOA and achieves results comparable or superior to other state-of-the-art algorithms.
A. Kaveh, L. Mottaghi, A. Izadifard,
Volume 12, Issue 1 (1-2022)
Abstract

In this paper the parametric study is carried out to investigate the effect of number of cells in optimal cost of the non-prismatic reinforced concrete (RC) box girder bridges. The variables are geometry of cross section, tapered length, concrete strength and reinforcement of the box girders and slabs that are obtained using ECBO metaheuristic algorithm. The design is based on AASHTO standard specification. The constraints are the bending and shear strength, geometric limitations and superstructure deflection. The link of CSiBridge and MATLAB software are used for the optimization process. The methodology carried out for two-cell, three-cell and four-cell box girder bridges. The results show that the total cost of the concrete, bars and formwork for two-cell box girder is less than those of the three- and four-cell box girder bridges.
M. Shahrouzi, A. Azizi,
Volume 12, Issue 1 (1-2022)
Abstract

The present work reveals a problem formulation to minimize material consumption and improve efficiency of diagrids to resist equivalent wind loading. The integrated formulation includes not only sizing of structural members but also variation in geometry and topology of such a system. Particular encoding technique is offered to handle practical variation of diagrid modules. A variant of Pseudo-random Directional Search is utilized to solve this problem treating a number of three dimensional structural models. Several issues are investigated including the effect of variation in the building height, its aspect ratio and fixing or releasing diagrid angles. Consequently, especial trend of variation in diagrid angle is observed with superior structural responses with respect to sizing designs of the fixed-angle modules.
M. Ghasemiazar, S. Gholizadeh,
Volume 12, Issue 1 (1-2022)
Abstract

This study is devoted to seismic collapse safety analysis of performance based optimally seismic designed steel chevron braced frame structures. An efficient meta-heuristic algorithm namely, center of mass optimization is utilized to achieve the seismic optimization process. The seismic collapse performance of the optimally designed steel chevron braced frames is assessed by performing incremental dynamic analysis and determining their adjusted collapse margin ratios. Two design examples of 5-, and 10-story chevron braced frames are illustrated. The numerical results demonstrate that all the performance-based optimal designs are of acceptable seismic collapse safety.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 12, Issue 1 (1-2022)
Abstract

This article presents numerical studies on semi-active seismic response control of structures equipped with Magneto-Rheological (MR) dampers. A multi-layer artificial neural network (ANN) was employed to mitigate the influence of time delay, This ANN was trained using data from the El-Centro earthquake. The inputs of ANN are the seismic responses of the structure in the current step, and the outputs are the MR damper voltages in the current step. The required training data for the neural controller is generated using genetic algorithm (GA). Using the El-Centro earthquake data, GA calculates the optimal damper force at each time step. The optimal voltage is obtained using the inverse model of the Bouc-Wen based on the predicted force and the corresponding velocity of the MR damper. This data is stored and used to train a multi-layer perceptron neural network. The ANN is then employed as a controller in the structure. To evaluate the efficiency of the proposed method, three- story, seven- story and twenty-story structures with a different number of MR dampers were subjected to the Kobe, Northridge, and Hachinohe earthquakes. The maximum reduction in structural drifts in the three-story structure are 13.05%, 39.90%, 15.89%, and 8.21%, for the El-Centro, Hachinohe, Kobe, and Northridge earthquakes, respectively. As the control structure is using a pre-trained neural network, the computation load in the event of an earthquake is extremely low. Additionally, as the ANN is trained on seismic pre-step data to predict the damper's current voltage, the influence of time lag is also minimized.
S. Sarjamei, M. Sajjad Massoudi, M. Esfandi Sarafraz,
Volume 12, Issue 1 (1-2022)
Abstract

The damage identification of truss constructions was investigated in this work. Damage detection is defined through an inverse optimization problem. A function defined as a combination of mode shapes and natural frequencies is examined to minimize damage structures. This guided approach considerably reduces the computational cost and increases the accuracy of optimization. This index mostly exhibits an acceptable performance. Gold Rush Optimization (GRO), an artificial intelligence system based on the power of human thinking and decision-making, was employed to address damage detection. The programming was done in MATLAB. Validation and verification were carried out using a 10, 25, 200, 272, and 582 bar truss. A comparison between the GRO, MCSS, PSO and TLBO is conducted to show the efficiency of the GRO in finding the global optimum. The results show that utilizing the proposed function and the GRO optimization technique to discover truss damaged structure in the quickest time possible is both reliable and stable.
S. Anvari, E. Rashedi, S. Lotfi,
Volume 12, Issue 1 (1-2022)
Abstract

Reliable and accurate streamflow forecasting plays a crucial role in water resources systems (WRS) especially in dams operation and watershed management. However, due to the high uncertainty associated WRS components and nonlinear nature of streamflow generations, the realistic streamflow forecasts is still one of the most challenging issue in WRS. This paper aimed to forecast one-month ahead streamflow of Karun river (Iran) by coupling an artificial neural network (ANN) with an improved binary version of gravitational search algorithm (IBGSA), named ANN- IBGSA. To this end, the best lag number for each predictor at Poleshaloo station was firstly selected by auto-correlation function (ACF). The ANN-IBGSA was used to minimize the sum of RMSE and R2 and to identify the optimal predictors. Finally, to characterize the hydro-climatic uncertainties associated with the selected predictors, an
implicit approach of Monte-Carlo simulation (MCS) was applied. The ACF plots indicated a significant correlation up to a lag of two months for the input predictors. The ANN-IBGSA identified the Tmean (t-1), Q(t-1) and Q(t) as the best predictors. Findings demonstrated that the ANN-IBGSA forecasts were considerably better than those previously carried out by researchers in 2013. The average improvement values were 9.91%, 11.85% and 9.13% for RMSE, R2 and MAE, respectively. The Monte-Carlo simulations demonstrated that all of forecasted values lie within the 95% confidence intervals.
 
A. Kaveh, P. Hosseini, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 1 (1-2022)
Abstract

In recent years many researchers prefer to use metaheuristic algorithms to reach the optimum design of structures. In this study, an Enhanced Vibrating Particle System (EVPS) is applied to get the minimum weight of large-scale dome trusses under frequency constraints. Vibration frequencies are important parameters, which can be used to control the responses of a structure that is subjected to dynamic excitation. The truss structures were analyzed by finite element method and optimization processes were implemented by the computer program coded in MATLAB. The effectiveness and efficiency of the Enhanced Vibrating Particle System (EVPS) is investigated in three large-scale dome trusses 600-, 1180-, and 1410-bar to obtain the weight optimization with frequency constraints.

Page 20 from 24     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb