Showing 36 results for Meta-Heuristic
A. Kaveh, M. R. Seddighian, H. Sadeghi, S. Sadat Naseri,
Volume 10, Issue 4 (10-2020)
Abstract
One of the most crucial problems in geo-engineering is the instability of unsaturated slopes, causing severe loss of life and property worldwide. In this study, five novel meta-heuristic methods are employed to optimize locating the Critical Failure Surface (CFS) and corresponding Factor of Safety (FOS). A Finite Element Method (FEM) code is incorporated to convert the strong form of the Richard’s differential equation to the weak form. More importantly, the derived code can consider both the seismic and seepage conditions additional to the static loading. Eventually, the proposed optimization procedure is validated against benchmark examples and some insights are provided.
F. Rahimi,
Volume 10, Issue 4 (10-2020)
Abstract
By incorporating structural engineering, animal husbandry, and veterinary, this interdisciplinary research accomplishes the following two main objectives: 1) design and optimization to reduce the weight of the steel structure skeleton of the stable with ECBO & CBO algorithms; 2) improving the performance of the natural ventilation system in the stable with some changes in the structure's geometric design.
In this study, each algorithm's performance will be investigated in the course of accomplishing the aforementioned objective. Furthermore, using stress ratios by algorithms in each member will be studied. Finally, using the algorithms, a stable steel structure with lower weight is designed.
In this paper, through changing and improving the structure's geometric design, a structure more compatible with the natural ventilation system's requirements is designed. These changes are as follows: 1) design of a taller stable structure; 2) larger design of the air inlets in the joint line between the upper part of the side walls and the lower part of the pitched roof.
S. Talatahari, V. Goodarzimehr, S. Shojaee,
Volume 11, Issue 2 (5-2021)
Abstract
In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap in a local optimum. To fix this problem Harmony search (HS) algorithm, which has a high exploration and high exploitation, is applied as a complement to the SOS algorithm. The weight of the structures' elements is the objective function which minimized under displacement and stress constraints using finite element analysis. To prove the high capabilities of the new algorithm several spatial and planar benchmark truss structures, designed and optimized and the results have been compared with those of other researchers. The results show that the new algorithm has performed better in both exploitation and exploration than other meta-heuristic and mathematics methods.
S. Sarjamei, M. S. Massoudi, M. Esfandi Sarafraz,
Volume 11, Issue 2 (5-2021)
Abstract
M. Danesh, J. Abdolhoseyni,
Volume 11, Issue 3 (8-2021)
Abstract
Nowadays, energy crisis is one of the most important issues faced by most countries. Given the accommodation of a large population, high-rise buildings have a significant role in creating or resolving this crisis. A recent solution with regard to the optimization and reduction of energy consumption is using smart systems in buildings. In fact, with the help of modern knowledge, smart buildings consume energy in the right place and time. By transforming a simple building into a dynamic one, not only will it be able to adapt to changing environmental conditions, it will also consider the living habits of dwellers and comfort standards in order to provide maximum satisfaction. Moreover, the money spent on making smart appliances will be fully compensated after a short while, saving the overall costs and energy. This descriptive-analytical study, conducted using library resources, e-books and papers, is an attempt to examine the effect of smartization on optimizing and increasing the efficiency of high-rise buildings. The results of comprehensive surveys in various sectors related to smart buildings show that one can optimize energy consumption to take an effective step in solving global energy issues using smart systems in buildings. This study is devoted to energy consumption of smart systems employing an efficient continuous evolutionary meta-heuristic algorithm.
M. Danesh, A. Iraji , S. Jaafari,
Volume 11, Issue 4 (11-2021)
Abstract
The main object in optimizing reinforced concrete frames based on the performance is decreasing the initial cost or life cycle cost or total cost. The optimization performed here is with the requirement of satisfying story drifts and rotation of plastic hinges. However, this optimization may decrease seismic strength of the structure. Newton Meta-Heuristic Algorithm (NMA) was used to optimize three-, six-, and twelve-story reinforced concrete frames based on the performance and utilizing the cost objective function. The seismic parameters of the optimized frames were calculated. The results showed that the inter-story drifts at the performance level of LS controls the design. According to the results, the objective function for construction cost is not useful for the optimization of the reinforced concrete frames. Because the amounts of the over strength, the absorbed plastic energy, and the ductility factor for the optimized frames are low using the objective function for the construction cost.
M. Shahrouzi, R. Jafari,
Volume 12, Issue 2 (4-2022)
Abstract
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number of investigators as a powerful meta-heuristic algorithm. Several cases of penalty handling techniques are offered and studied using either maximum or summation of constraint violations as well as their combinations. Consequently, the most successive sequence, is identified for the treated continuous and discrete structural examples. Such a dynamic constraint handling is an affordable generalized solution for structural sizing design by iterative population-based algorithms.
D. Sedaghat Shayegan,
Volume 12, Issue 4 (8-2022)
Abstract
In this article, the optimum design of a reinforced concrete solid slab is presented via an efficient hybrid metaheuristic algorithm that is recently developed. This algorithm utilizes the mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The efficiency of this algorithm is compared with mouth-brooding fish (MBF), Neural Dynamic (ND), Cuckoo Search Optimization (COA) and Particle Swarm Optimization (PSO). The cost of the solid slab is considered to be the objective function, and the design is based on the ACI code. The numerical results indicate that this hybrid metaheuristic algorithm can to construct very promising results and has merits in solving challenging optimization problems.
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract
Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
M. Sedighpour, M. Yousefikhoshbakht,
Volume 13, Issue 4 (10-2023)
Abstract
The balanced vehicle routing problem (BVRP) is one of the most famous research problems in operations, which has a very important position in combination optimization problems. In this problem, a fleet of vehicles with capacity Q starts moving from a node called the warehouse and returns to it after serving customers, provided that they visit each customer only once and never exceed the capacity Q. The goal is to minimize the paths traveled by vehicles provided that the distances traveled by the vehicles are the same as possible, for more justice in working time and income. This article presents the application of a hybrid imperialist competitive algorithm (HICA) to solve the problem. Unlike other optimization methods, this method is inspired by the socio-political process of societies and uses the competition between colonizing and colonized countries to reach the solution. To test the effectiveness of the algorithm, a set of standard examples are considered and the algorithm is implemented on it. The calculation results on these examples, which have a size of 50 to 200, show that the proposed algorithm has been able to compete well with well-known meta-heuristic algorithms in terms of the quality of the answers. In addition, the solutions close to the best answers obtained so far are generated for most of the examples.
A. H. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 1 (1-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract
Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
A.h. Karimi, A. Bazrafshan Moghaddam,
Volume 14, Issue 2 (2-2024)
Abstract
Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.
Dr. M. Shahrouzi, A.m. Taghavi,
Volume 14, Issue 3 (6-2024)
Abstract
The sine-cosine algorithm is concerned as a recent meta-heuristic method that takes benefit of orthogonal functions to scale its walking steps through the search space. The idea is utilized here in a different manner to develop a modified sine-cosine algorithm (MSCA). It is based on the controlled perturbation about current solutions by applying a novel combination of sine and cosine functions. The desired transition from exploration to exploitation phases mainly relies on such a term that provides continued fluctuations within a dynamic amplitude. Performance of the proposed algorithm is further evaluated on a set of thirteen test functions with unimodal and multimodal search spaces, as well as on engineering and structural problems in a variety of discrete, continuous and mixed discrete-continuous types. Numerical simulations show that MSCA can find the best literature results for such benchmarks problems. Additional fair comparisons, declare competitive performance of the proposed method with other meta-heuristic algorithms and its enhancement with respect to the standard sine-cosine algorithm.
M. Golkar, R. Sheikholeslami,
Volume 14, Issue 3 (6-2024)
Abstract
Spillway design poses a significant challenge in effectively managing the energy within water flow to prevent erosion and destabilization of dam structures. Traditional approaches typically advocate for standard hydraulic jump stilling basins or other energy dissipators at spillway bases yet constructing such basins can be prohibitively large and costly, particularly when extensive excavation is necessary. Consequently, growing interest in cascade hydraulic structures has emerged over recent decades as an alternative for energy dissipation. These structures utilize a series of arranged steps to facilitate water flow, effectively dissipating energy as it traverses the cascade. Commonly deployed in scenarios involving high dams or steep gradients, the stepped configuration ensures efficient aeration and substantial energy dissipation along the structure, thereby reducing the size and cost of required stilling basins. Despite extensive research on hydraulic characteristics using physical and numerical models and established design procedures, construction cost optimization of step cascades remains limited but promising. This paper aims to address this gap by employing two novel gradient-based meta-heuristic optimization techniques to enhance the efficiency and cost-effectiveness of cascade stilling basin designs. Through comparative analyses and evaluations, this study demonstrates the efficacy of these techniques and offers insights for future research and applications in hydraulic structures design optimization.
L. Coelho, M. Shahrouzi, N. Khavaninzadeh,
Volume 14, Issue 4 (10-2024)
Abstract
Diagrids are of practical interest in high-rise buildings due to their architectural configuration and efficiency in withstanding lateral loads by exterior diagonal members. In the present work, diagrid models are screened based on a sizing optimization approach. Section index of each member group is treated as a discrete design variable in the optimization problem to be solved. The structural constraints are evaluated due to Load and Resistant Design Factor regulations under both gravitational and wind loadings. The research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic paradigm for such a large-scale and highly constrained discrete problem. Second, the effect of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third, distinct cases of rigid and flexible bases are compared to study the effect of such boundary conditions on the results. The effect of soil flexibility beneath the foundation on the optimal design was found highly dependent on the diagrid geometry. The best weight and performance in most of the treated examples belong to the geometry that covers two stories by every grid line on the flexible-base.