Search published articles


Showing 25 results for UZ

N. Sedaghati , M. Shahrouzi,
Volume 12, Issue 4 (8-2022)
Abstract

Beyond common practice that treats structural damage detection as an optimization problem, the present work offers another approach that updates boundaries of the damage ratios. In this approach the bandwidth between such lower and upper boundaries, is adaptively reduced aiming to coincide at the true damage state. Formulation of the proposed method is developed using modal strain energy in a system of finite elements. A resolution-based technique is applied so that the search space cardinality can be defined and then reduced. The proposed method is validated on different structural types including beam, frame and truss examples with various damage scenarios. The results exhibit high cardinality reduction and capability of the proposed iterative method in squeezing the design space for more efficient search.
 
M. Ghorbanzadeh, P. Homami, M. Shahrouzi,
Volume 13, Issue 1 (1-2023)
Abstract

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most probable point in the standard normal space and the subsequent reliability index with a fast convergence rate. The problem is solved by using a modified trust-region sequential quadratic programming approach that evaluates step direction and tunes step size through a linearized procedure. Then, the probability expectation method is implemented to eliminate the linearization error. The new applications of the proposed method could overcome high nonlinearity of the limit state function and improve the accuracy of the final result, in good agreement with the Monte Carlo sampling results. The proposed algorithm robustness is comparatively shown in various numerical benchmark examples via well-established classes of the first-order reliability methods. The results demonstrate the successive performance of the proposed method in capturing an accurate reliability index with higher convergence rate and competitive effectiveness compared with the other first-order methods.
 
M. Shahrouzi, A. Salehi,
Volume 13, Issue 2 (4-2023)
Abstract

In most practical cases, structural design variables are linked to a discrete list of sections for optimal design. Cardinality of such a discrete search space is governed by the number of alternatives for each member group. The present work offers an adaptive strategy to detect more efficient alternatives and set aside redundant ones during optimization. In this regard, the difference between the lower and the upper bounds on such variables is gradually reduced by a procedure that adapts history of the selected alternatives in previous iterations. The propsed strategy is implemented on a hybrid paritcle swarm optimizer and imperialist competitive algorithm. The former is a basic swarm intelligent method while the later utilizes subpopulations in its search. Spatial and large-scale structures in various shapes are treated showing successive performance improvement. Variation of a diversity index and resulting band size are traced and discussed to declare behavior merits of the proposed adaptive band strategy.  
 
M. Shahrouzi, S.-Sh. Emamzadeh, Y. Naserifar,
Volume 13, Issue 4 (10-2023)
Abstract

Shape optimization of a double-curved dam is formulated using control points for interpolation functions. Every design vector is decoded into the integrated water-dam-foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm algorithm with ant colony optimization and simulated annealing. The best experiences of the search agents are indirectly shared via pheromone trail deposited on a bi-partite characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in simulated annealing. The proposed method earned the first rank in comparison with six well-known meta‑heuristic algorithms in solving benchmark test functions. It captured the optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21% reduced concrete volume with respect to the common USBR design practice and 16% better than the particle swarm optimizer. Such an optimal design was also superior to the others in stress redistribution for better performance of the dam system.
 
M. Shahrouzi,
Volume 14, Issue 2 (2-2024)
Abstract

During the process of continuum topology optimization some pattern discontinuities may arise. It is an important challenge to overcome such irregularities in order to achieve or interpret the true optimal layout. The present work offers an efficient algorithm based on graph theoretical approach regarding density priorities. The developed method can recognize and handle solid continuous regions in a pre-optimized media. An illustrative example shows how the proposed priority guided trees can successfully distinguish the most crucial parts of the continuum during topology optimization.
 

Page 2 from 2     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb