Showing 8 results for Acceleration
A. Nozari , H.e. Estekanchi,
Volume 1, Issue 2 (6-2011)
Abstract
Numerical simulation of structural response is a challenging issue in earthquake engineering and there has been remarkable progress in this area in the last decade. Endurance Time (ET) method is a new response history based analysis procedure for seismic assessment and structural design in which structures are subjected to a gradually intensifying dynamic excitation and their seismic performance is evaluated based on their responses at different excitation levels. Generating appropriate artificial dynamic excitation is essential in this type of analysis. In this paper, an optimization procedure is presented for computation of the intensifying acceleration functions utilized in the ET method and the results of this procedure are discussed. A set of the ET acceleration functions (ETAFs) is considered which has been produced utilizing numerical optimization considering 2048 acceleration points as optimization variables by an unconstrained optimization procedure. The ET formulation is then modified from the continuous time condition into the discrete time state thus the optimization problem is reformulated as a nonlinear least squares problem. In this way, a second set of the ETAFs is generated which better satisfies the proposed objective function. Subsequently, acceleration points are increased to 4096, for 40 seconds duration, and the third set of the ETAFs is produced using a multi level optimization procedure. Improvement of the ETAFs is demonstrated by analyzing several SDOF systems.
A. Bagheria, G. Ghodrati Amirib, M. Khorasanib , J. Haghdoust,
Volume 1, Issue 4 (12-2011)
Abstract
The main objective of this study is to present new method on the basis of genetic algorithms for attenuation relationship determination of horizontal peak ground acceleration and spectral acceleration. The proposed method employs the optimization capabilities of genetic algorithm to determine the coefficients of attenuation relationships of peak ground and spectral accelerations. This method has been applied to 361 Iranian earthquake records with magnitudes between 4.5 and 7.4 obtained from two seismic zones, namely Zagros and Alborz-Central Iran. The obtained results indicated that the proposed method can be characterized as a powerful tool for prediction horizontal peak ground and spectral accelerations.
A. Kaveh , V.r. Mahdavi,
Volume 2, Issue 2 (6-2012)
Abstract
Endurance Time Acceleration Functions are specially predesigned intensifying excitation functions that their amplitude increases with time. On the other hand, wavelet transform is a mathematical tool that indicates time variations of frequency in a signal. In this paper, an approach is presented for generating endurance time acceleration functions (ETAFs) whose response spectrum is compatible with the European Code regulations (EC8) elastic spectrum. Method applied is a modification of data in time and frequency domain. For this purpose, wavelet transform has been used to decompose a series of random points to several levels such that each level covers a special range of frequency, then every level is divided into the numbers of equal time intervals and each interval of time is multiplied by a variable. Subsequently, the mathematical unconstrained optimization algorithm is used to calculate the variables and minimize error between response and target spectra. The prosed procedure is used in two methods. Then with two methods, two different acceleration functions are produced.
M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract
In this paper, a method is presented for damage detection of bridges using the Enhanced Colliding Bodies Optimization (ECBO) utilizing time-domain responses. The finite element modeling of the structure is based on the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse problem, which is optimized by the ECBO algorithm, and the damages in the structures are fully detected. Furthermore, for simulating the real situation, the effect of measured noises is considered on the structure, to obtain more accurate results.
M. Khatibinia, H. Gholami, S. F. Labbafi,
Volume 6, Issue 4 (10-2016)
Abstract
Tuned mass dampers (TMDs) are as a efficient control tool in order to reduce undesired vibrations of tall buildings and large–span bridges against lateral loads such as wind and earthquake. Although many researchers has been widely investigated TMD systems due to its simplicity and application, the optimization of parameters and placement of TMD are challenging tasks. Furthermore, ignoring the effects of soil–structure interaction (SSI) may lead to unrealistic desig of structure and its dampers. Hence, the effects of SSI should be considered in the design of TMD. Therefore, the main aim of this study is to optimize parameters of TMD subjected to earthquake and considering the effects of SSI. In this regard, the parameters of TMD including mass, stiffness and damping optimization are considered as the variables of optimization. The maximum absolute displacement and acceleration of structure are also simultaneously selected as objective functions. The multi –objective particle swarm optimization (MOPSO) algorithm is adopted to find the optimal parameters of TMD. In this study, the Lagrangian method is utilized for obtaining the equations of motion for SSI system, and the time domain analysis is implemented based on Newmark method. In order to investigate the effects of SSI in the optimal design of TMD, a 40 storey shear building with a TMD subjected to the El–Centro earthquake is considered. The numerical results show that the SSI effects have the significant influence on the optimum parameters of TMD.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.
S. Fallahian, A. Joghataie , M.t. Kazemi,
Volume 8, Issue 3 (10-2018)
Abstract
An effective method utilizing the differential evolution algorithm (DEA) as an optimisation solver is suggested here to detect the location and extent of single and multiple damages in structural systems using time domain response method. Changes in acceleration response of structure are considered as a criterion for damage occurrence. The acceleration of structures is obtained using Newmark method. Damage is simulated by reducing the elasticity modulus of structural members. Three illustrative examples are numerically investigated, considering also measurement noise effect. All the numerical results indicate the high accuracy of the proposed method for determining the location and severity of damage.
M.r. Mohammadizadeh, E. Jahanfekr, S. Shojaee,
Volume 10, Issue 4 (10-2020)
Abstract
The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SOLMA). Using the acceleration response in a number of structural nodes under dynamic excitation, identification of the location and extent of damage in the plate elements are obtained by the proposed algorithm over an iterative cycle and by updating the sensitivity matrix. The damage has been assumed in the form of decreased modulus of elasticity in linear mode. A numerical problem has been solved and presented in order to verify and compare the proposed damage detection method with other methods. Also several numerical problems have been solved and its results have been presented in order to evaluate different scenarios such as one or more damages, small or large damage extent, absence or presence of noise with different levels, number of measured responses (number of sensors), position of measured points and the dynamic analysis time of the damage detection problem with the proposed method. The results show the appropriate accuracy, efficiency and performance of the proposed damage detection method.