Search published articles


Showing 2 results for Castellated Beam

P. D. Kumbhar , A. M. Jamadar,
Volume 5, Issue 3 (8-2015)
Abstract

Castellated beams are generally provided with hexagonal and circular openings in the web portion. However, in view of structural applications, appropriate size and shape of openings in web are always a major issue of concern. Research work carried out in optimizing sizes of castellated beam with hexagonal openings have reported that castellated beams fail mainly by local failure modes and stress concentrations at opening edges. Castellated beams with sinusoidal openings offer better performance due to its increased area for stress distribution in addition to curved edges that causes smooth stress distribution. Few researchers have studied flexural behaviour of castellated beams with sinusoidal openings however, optimization for size of such openings has not been reported so far. The paper focuses on parametric study of castellated beam with sinusoidal openings for optimization of opening size. Finite element analysis (FEA) is carried out by Abaqus software and also by Eurocode for different opening sizes and results obtained is experimentally validated. Results show that, castellated beam with sinusoidal opening of size 0.55times the overall depth of beam gives better strength.
A. Kaveh, F. Shokohi,
Volume 5, Issue 3 (8-2015)
Abstract

The main object of this research is to optimize an end-filled castellated beam. In order to support high shear forces close to the connections, sometimes it becomes necessary to fill certain holes in web opening beam. This is done by inserting steel plates and welding from both sides. Optimization of these beams is carried out using three meta-heuristic methods involves CSS, CBO, and CBO-PSO algorithms. To compare the performance of these algorithms, the minimum cost of the beam is taken as the design objective function. Also, in this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. A number of design examples are considered to solve in this case. Comparison of the optimal solution of these methods demonstrates that the hexagonal beams have less cost than cellular beams. It is observed that optimization results obtained by the CBO-PSO for more design examples have less cost in comparison to the results of the other methods.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb