Search published articles


Showing 2 results for Damage Detection

G. Ghodrati Amiri, A. Zare Hosseinzadeh, S. A. Seyed Razzaghi,
Volume 5, Issue 4 (7-2015)
Abstract

This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, the cost function is solved by Democratic Particle Swarm Optimization (DPSO) algorithm to achieve the optimal solution of the problem lead to damage identification. DPSO is a modified version of standard PSO algorithm which is developed for presenting a fast speed evolutionary optimization strategy. The applicability of the method is demonstrated by studying three numerical examples which consists of a ten-story shear frame, a plane steel truss and a plane steel frame. Several challenges such as the efficiency of the DPSO algorithm in comparison with other evolutionary optimization approaches for solving the inverse problem, impacts of random noise in input data on the reliability of the presented method, and effects of the number of available modal data for damage identification, are studied. The obtained results reveal good, robust and stable performance of the presented method for structural damage identification using only the first several modes’ data.
M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse  problem,  which  is  optimized  by  the  ECBO  algorithm,  and  the  damages  in  the structures  are  fully  detected.  Furthermore,  for  simulating  the  real  situation,  the  effect  of measured noises is considered on the structure, to obtain more accurate results.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb