Search published articles


Showing 4 results for Enhanced Vibrating Particle System

A. Kaveh, S. R. Hoseini Vaez, P. Hosseini, H. Fathi,
Volume 11, Issue 2 (5-2021)
Abstract

A modified dolphin monitoring (MDM) is used to augment the efficiency of particle swarm optimization (PSO) and enhanced vibrating particle system (EVPS) for the numerical crack identification problems in plate structures. The extended finite element method (XFEM) is employed for modeling the fracture. The forward problem is untangled by some cycle loading phase via dynamic XFEM. Furthermore, the inverse problem is solved and compared via two PSO and EVPS algorithms. All the problems are also dissolved by means of fine and coarse meshing. The results illustrate that the function of XFEM-PSO-MDM and XFEM-EVPS-MDM is superior to XFEM-PSO and XFEM-EVPS methods. The algorithms coupled via MDM offer a higher convergence rate with more reliable results. The MDM is found to be a suitable tool which can promotes the ability of the algorithms in achieving the optimum solutions.
A. Kaveh, P. Hosseini, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 1 (1-2022)
Abstract

In recent years many researchers prefer to use metaheuristic algorithms to reach the optimum design of structures. In this study, an Enhanced Vibrating Particle System (EVPS) is applied to get the minimum weight of large-scale dome trusses under frequency constraints. Vibration frequencies are important parameters, which can be used to control the responses of a structure that is subjected to dynamic excitation. The truss structures were analyzed by finite element method and optimization processes were implemented by the computer program coded in MATLAB. The effectiveness and efficiency of the Enhanced Vibrating Particle System (EVPS) is investigated in three large-scale dome trusses 600-, 1180-, and 1410-bar to obtain the weight optimization with frequency constraints.
P. Hosseini, A. Kaveh, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 3 (4-2022)
Abstract

Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization technique named Enhanced Vibrating Particle System (EVPS). Finite element analyses of structures and optimization process are coded in MATLAB. Large-scale dome truss of 600-bar, 1180-bar and 1410-bar are investigated in this paper and are compared with the previous studies. Also, a comparison is made between the reliability indexes of Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based Design Optimization (RBDO).
 
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract

Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb