Search published articles


Showing 7 results for Graph Theory

S.h. Mirmohammadi, Sh. Shadrokh, K. Eshghi,
Volume 2, Issue 2 (6-2012)
Abstract

The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the ordering time. The properties of an optimal order policy are argued and on the basis of them, a branch and bound algorithm is presented to construct an optimal sequence of order policies. In the proposed B&B algorithm, some useful fathoming rules have been proven to make the algorithm very efficient. By defining a rooted tree graph, it has been shown that the worst-case time complexity function of the presented algorithm is polynomial. Finally, some test problems which are randomly generated in various environments are solved to show the efficiency of the algorithm.
P. Sharafi, M. Mortazavi, M. Askarian, M. E. Uz, C. Zhang, J. Zhang,
Volume 7, Issue 4 (10-2017)
Abstract

Graph theory based methods are powerful means for representing structural systems so that their geometry and topology can be understood clearly. The combination of graph theory based methods and some metaheuristics can offer effective solutions for complex engineering optimization problems. This paper presents a Charged System Search (CSS) algorithm for the free shape optimizations of thin-walled steel sections, represented by some popular graph theory based methods. The objective is to find shapes of minimum mass and/or maximum strength for thin-walled steel sections that satisfy design constraints, which results in a general formulation for a bi-objective combinatorial optimization problem. A numerical example involving the shape optimization of thin-walled open and closed steel sections is presented to demonstrate the robustness of the method.


A. Kaveh, A. Dadras,
Volume 8, Issue 2 (8-2018)
Abstract

In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the corresponding graph, and k-median approach is employed. The performance of these methods is investigated through four FE models with different topology and number of meshes. A comparison of the numerical results using different algorithms indicates, in most cases the BBO is capable of performing better or identical using less time with equal computational effort.
A. Kaveh, J. Jafari Vafa,
Volume 12, Issue 2 (4-2022)
Abstract

The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal analysis.
In this paper, the simulated annealing algorithm has been employed to form suboptimal cycle basis. The simulated annealing algorithm works by using local search generating neighbor solution, and also escapes local optima by accepting worse solutions. The results show that this algorithm can be used to generate suboptimal and subminimal cycle bases. Compared to the existing heuristic algorithms, it provides better results. One of the advantages of this algorithm is its simplicity and its ease for implementation.
 
M. Shahrouzi, S.-Sh. Emamzadeh, Y. Naserifar,
Volume 13, Issue 4 (10-2023)
Abstract

Shape optimization of a double-curved dam is formulated using control points for interpolation functions. Every design vector is decoded into the integrated water-dam-foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm algorithm with ant colony optimization and simulated annealing. The best experiences of the search agents are indirectly shared via pheromone trail deposited on a bi-partite characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in simulated annealing. The proposed method earned the first rank in comparison with six well-known meta‑heuristic algorithms in solving benchmark test functions. It captured the optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21% reduced concrete volume with respect to the common USBR design practice and 16% better than the particle swarm optimizer. Such an optimal design was also superior to the others in stress redistribution for better performance of the dam system.
 
I. Karimi, M. S. Masoudi,
Volume 14, Issue 1 (1-2024)
Abstract

The main part of finite element analysis via the force method involves the formation of a suitable null basis for the equilibrium matrix. For an optimal analysis, the chosen null basis matrices should exhibit sparsity and banding, aligning with the characteristics of sparse, banded, and well-conditioned flexibility matrices. In this paper, an effective method is developed for the formation of null bases of finite element models (FEMs) consisting of shell elements. This leads to highly sparse and banded flexibility matrices. This is achieved by associating specific graphs to the FEM and choosing suitable subgraphs to generate the self-equilibrating systems (SESs) on these subgraphs. The effectiveness of the present method is showcased through two examples.
 
M. Shahrouzi,
Volume 14, Issue 2 (2-2024)
Abstract

During the process of continuum topology optimization some pattern discontinuities may arise. It is an important challenge to overcome such irregularities in order to achieve or interpret the true optimal layout. The present work offers an efficient algorithm based on graph theoretical approach regarding density priorities. The developed method can recognize and handle solid continuous regions in a pre-optimized media. An illustrative example shows how the proposed priority guided trees can successfully distinguish the most crucial parts of the continuum during topology optimization.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb